共查询到18条相似文献,搜索用时 62 毫秒
1.
利用超临界CO_2作为物理发泡剂,采用高压釜间歇发泡法,制备了聚乳酸/聚丁二酸丁二醇酯/氧化锌(PLA/PBS/ZnO)微孔纳米复合材料,研究了超临界CO_2微孔发泡过程中,发泡温度、保压压力和释压速率对PLA/PBS/ZnO微孔纳米复合材料泡孔结构的影响。结果表明:发泡温度对微孔纳米复合材料泡孔结构的影响显著且与纳米复合材料熔体强度密切相关,温度相对过高或过低,都会引起聚合物熔体强度和表面张力的变化而导致无法得到均匀密集的泡孔,当体系的发泡温度为90℃时,复合材料的泡孔平均直径最小,泡孔密度最大,泡孔尺寸分布最集中;保压压力对泡孔结构的影响体现在超临界CO_2的溶解度和发泡体系的黏度上,保压压力较低时得到的泡孔平均尺寸较大且分布不均匀,当保压压力为16 MPa时,复合材料的泡孔平均直径最小,泡孔密度最大,泡孔尺寸分布最集中;释压速率决定着发泡初始阶段的成核效率,随着释压速率的升高,复合材料的泡孔平均直径减小,泡孔密度显著增大,泡孔数量增多且尺寸分布更集中。 相似文献
2.
超临界CO2方法制备环氧树脂/纳米介孔MCM-41复合材料 总被引:4,自引:0,他引:4
采用超临界方法先将环氧树脂低聚物引入介孔MCM-41的一维孔道内,再与基体溶液共混,制备出环氧树脂/MCM-41纳米复合材料.研究了复合材料的拉伸性能与填充复合颗粒含量的关系.结果表明,超临界的方法确实可将环氧树脂低聚物分子链引入到MCM-41的孔道,并占据孔道的绝大多数空间.环氧基团进入介孔的孔道中并使孔口处的环氧基团与基体环氧产生了较强的界面相互作用,增加了两者的相容性.填充含量较低的复合颗粒就能提高复合材料的拉伸性能. 相似文献
3.
4.
以滑石粉为成核剂,超临界CO_2为发泡剂,采用间歇釜式方法制备微孔发泡木粉/聚丙烯复合材料。采用DSC、XRD和SEM对微孔发泡木粉/聚丙烯复合材料的结晶行为与泡孔结构进行了测定与分析。结果表明:滑石粉的添加能够提高微孔发泡木粉/聚丙烯复合材料的结晶温度,诱导产生不完善的α晶型;能够提高聚合物基体的熔体黏度,减小泡孔尺寸,增加泡孔密度,促使泡孔尺寸分布更均匀,最终能够形成泡孔密度为1.0×10~9个/cm~3、平均泡孔半径为16.4μm、发泡倍率为18倍、表观密度约为0.055g/cm~3的微孔发泡木粉/聚丙烯复合材料。 相似文献
5.
选用价廉无毒的碳酸氢钠(NaHCO3)作为发泡剂,利用反溶剂重结晶法进行细化,成功地制备出超细NaHCO3粒子.最佳制备条件为:使用10%质量分数的NaHCO3,蒸馏水与无水乙醇体积比1∶14,搅拌速度1100 r/min,制备温度-5℃,入料速度1 mL/min.纳米粒度分析仪测试表明NaHCO3平均尺寸为143.2 nm,尺寸分布非常窄.将超细NaHCO3添加到聚丙烯(PP)中进行微孔发泡,使用扫描电镜观察并使用Nano Measurer分析泡孔尺寸,表明当NaHCO3用量为4.5 phr时,其泡孔平均尺寸低至0.47 μm,泡孔尺寸标准方差仅为0.16 μm,低于任何文献报道值.力学性能较优,其中拉伸强度下降了9.6%,而冲击强度提高了47.8%,弯曲强度提高了20.2%.这种使用普通注塑机获得高质量低成本的微孔发泡材料,对微孔材料的制备和应用有一定的意义. 相似文献
6.
侯德发马寒冰李秀云陈健健何杰廖辉伟 《高分子材料科学与工程》2017,(12):48-52
用双酚AF型环氧树脂(DGEBHF)改性双酚A型氰酸酯(BACY),制备一种新型含氟氰酸酯共聚物,并对比双酚A型环氧树脂(DGEBA)/BACY共聚物研究了其性能。采用凝胶时间和差示扫描量热法分析了DGEBHF对BACY固化性能的影响,结果表明,DGEBHF能有效改善BACY的固化性能。通过冲击强度(σK)和粘接强度(τ)的测试,研究了DGEBHF添加量对DGEBHF/BACY共聚物力学性能的影响,结果表明,共聚物的σK随DGEBHF含量的增加而增大;添加总量15%的DGEBHF时,DGEBHF/BACY粘接强度最大,且相比纯BACY明显提高。介电性能分析可得,DGEBHF会降低BACY的介电性能,但是DGEBHF/BACY的介电性能优于DGEBA/BACY。最后,通过热重分析法分析了DGEBHF对BACY热稳定性的影响,结果发现,DGEBHF会降低BACY的热稳定性,但是DGEBHF/BACY的热稳定性大于DGEBA/BACY。 相似文献
7.
氧化石墨烯(GO)是石墨烯重要的衍生物之一,通过氧化和超声波分散制备了GO纳米片/环氧树脂复合材料。采用XRD、拉曼光谱、FTIR和TEM表征了GO纳米片的结构与形貌,研究了GO纳米片用量对GO纳米片/环氧树脂复合材料热稳定性、力学性能及介电性能的影响。结果表明:GO纳米片的加入提高了GO纳米片/环氧树脂复合材料失热稳定性;随着GO纳米片填充量的增加,GO纳米片/环氧树脂复合材料的冲击强度和抗弯性能先提高后降低,其介电常数和介电损耗则先减小后增加。GO纳米片填充量为0.3wt%的GO纳米片/环氧树脂复合材料的失重5%时的热分解温度由纯环氧树脂的400.2℃提高到424.5℃,而冲击强度和弯曲强度分别在GO纳米片填充量为0.2wt%和0.3wt%时达到最大,冲击强度由纯环氧树脂的10.5kJ/m2提高到19.7kJ/m2,弯曲强度由80.5 MPa提高到104.0 MPa。 相似文献
8.
对橡胶与聚乙烯共混微孔材料进行了静态力学和动态力学性能表征,并通过电镜观察其材料拉伸受力前后的微孔结构变化,了解材料的各种力学行为及材料组份和加工工艺对材料力学性能的影响,同时检验材料的透水性能。 相似文献
9.
10.
11.
先采用机械搅拌和超声分散方式在环氧树脂中分散纳米SiO2微粒,通过扫描电镜表征断面的形貌来分析纳米SiO2分散效果,再采用力学性能测试,研究纳米SiO2对环氧树脂及其玻璃纤维增强复合材料性能的影响,结果表明,超声分散效果明显优于机械搅拌分散;纳米SiO2含量对分散效果、环氧树脂及其复合材料力学性能具有显著影响;采用超声分散的1%(质量分数)纳米SiO2改性环氧树脂浇铸体的弯曲强度比未改性的提高了21.2%,其玻璃纤维增强复合材料的弯曲和拉伸强度分别提高了9.7%和7.9%,但层间剪切强度则降低了10.6%。 相似文献
12.
13.
以酶解木质素(EHL)为原料,采用苯酚-硫酸法对其进行酚化改性,所得酚化木质素(PL)在碱性条件下,与环氧氯丙烷(ECH)合成木质素-环氧树脂(L-EP),利用FT-IR对产物进行表征。探讨单因素反应条件对酚化工艺的影响。结果表明:反应时间3.0h、反应温度95℃、2mol/L H_2SO_4用量为4mL/g时,木质素的酚化效果最佳,其酚羟基含量达到4.632mmol/g,较EHL提高42%。研究了不同L-EP添加量对L-EP/环氧E-51复合材料力学性能和热性能的影响。结果显示:L-EP的添加量为5%时,L-EP/环氧E-51复合材料的拉伸强度最好,较纯E-51提高26%;随着L-EP添加量的增加,L-EP/环氧E-51复合材料的热稳定性增强。采用非等温法分析环氧E-51和L-EP/环氧E-51复合材料的固化动力学,结果证明:L-EP对复合材料固化有一定的促进作用。 相似文献
14.
聚硅氧烷/聚己内酯/环氧树脂复合体系的制备及表面性能 总被引:1,自引:1,他引:1
通过—OH和—NCO的亲核加成反应,直接合成出端硅氧烷基聚己内酯/聚硅氧烷混合物(PCL-TE-Si/PDMS-TESi),再与环氧树脂(EP)共混制得聚硅氧烷/聚己内酯/环氧树脂复合体系。利用扫描电镜、X光电子能谱对复合体系进行了两相相容性分析和表面元素分析,通过测试复合体系的表面接触角,利用Owens-Wendt-Kaelble模型推算出复合体系的表面张力,并研究了体系的耐水性。结果表明:复合体系在固化过程中,Si元素在一定程度上向表面迁移富集;50℃固化体系的两相相容性好于室温固化体系;室温固化体系的表面张力随PCL-TESi/PDMS-TESi含量的增加逐渐下降,且低于50℃ 固化体系的表面张力;复合体系耐水性优异,当PCL-TESi/PDMS-TESi 与EP质量比为5∶5时,常温固化体系在50℃蒸馏水中浸泡7天后质量变化率小于1%。 相似文献
15.
采用正压过滤法制备了多壁碳纳米管(MWCNTs)网格(巴基纸),并采用真空辅助RTM工艺制备了MWCNTs网格/环氧树脂复合材料。通过SEM、FTIR、拉伸测试等对MWCNTs网格的微观形貌和性能进行了表征,并研究了MWCNTs网格/环氧复合材料的拉伸性。结果表明,所制备的功能化MWCNTs网格比较均匀,拉伸强度在22~32 MPa之间,拉伸模量约为1 GPa,相比未功能化处理的MWCNTs网格,强度最大提高了约167%。功能化MWCNTs网格/环氧树脂复合材料的拉伸强度和拉伸模量可达到152 MPa和6.48 GPa,相比空白环氧树脂提高了约1倍以上,拉伸试样断面SEM表明,环氧树脂对功能化MWCNTs网格的浸润效果良好,界面结合紧密,有效地提高了复合材料的力学性能。 相似文献
16.
以液态环氧树脂为结合剂、金刚石为磨料、纳米SiO2为增强材料, 采用浇注法制备了金刚石磨块, 并研究了其性能。结果表明: 促进剂与成型料的总质量比0.25%、固化工艺为130℃/4 h+160℃/2 h时, 磨块可获得较好的固化效果; 金刚石表面经过硅烷偶联剂或镀Ni处理均可提高磨块的耐磨性, 磨削比分别提高15.0%和32.5%; 添加经硅烷偶联剂改性后的纳米SiO2可均匀分散于磨块体系中, 起到质点增强的作用, 且其质量分数为4%时, 磨块的抗弯强度和洛氏硬度最大, 分别达到106 MPa和HRB 56。 相似文献
17.
18.
采用双酚A型环氧树脂(DGEBA)、改性咪唑(MIM)及改性脂肪胺(MAA)研制快速固化树脂体系。分别利用DSC和流变仪测试了树脂体系的固化特性与流变行为,优选了树脂配方。采用真空辅助树脂灌注工艺(VARIM)制备了快速成型的碳纤维/环氧复合材料层板,考察了层板的成型质量和力学性能,并与常规固化的层板性能进行了对比。结果表明:采用优选的树脂配方,120 ℃下树脂在5 min内固化度达95%,碳纤维/环氧复合材料层板成型固化时间可控制在13 min以内,固化度达95%以上,并且没有明显缺陷;与常规固化相比(固化时间大于2 h),快速固化碳纤维/环氧复合材料层板的弯曲性能和耐热性能降低幅度较小。 相似文献