首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
针刺C/SiC复合材料拉-压疲劳特性与失效机理EI北大核心CSCD   总被引:1,自引:0,他引:1  
研究了室温下针刺C/SiC复合材料的拉-压疲劳特性,并与其拉-拉疲劳特性进行了对比。结果表明:针刺C/SiC复合材料的拉-压疲劳强度略低于拉-拉疲劳强度;两种循环载荷下都存在迟滞现象,随着循环数的增大迟滞环不断右移,且偏斜程度和包围面积不断增大。采用扫描电子显微镜对失效试件的断口形貌和微观结构的观察表明:除了垂直于加载方向的基体开裂以及界面脱粘,拉-压循环加载下的细观失效机制还包括平行于加载方向的基体开裂以及层间的开裂。这些平行于加载方向的损伤使得纤维受力状态恶化,最终削弱了针刺C/SiC复合材料拉-压疲劳强度。  相似文献   

2.
碳/碳复合材料疲劳损伤失效试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
对单向碳/碳复合材料纵向拉-拉疲劳特性及面内剪切拉-拉疲劳特性进行了试验研究; 对三维四向编织碳/碳复合材料的纵向拉-拉疲劳特性及纤维束-基体界面剩余强度进行了试验研究。使用最小二乘法拟合得到了单向碳/碳复合材料纵向及面内剪切拉-拉疲劳加载下的剩余刚度退化模型及剩余强度退化模型, 建立了纤维束-基体界面剩余强度模型。结果显示: 单向碳/碳复合材料在87.5%应力水平的疲劳载荷下刚度退化最大只有8.8%左右, 在70.0%应力水平的疲劳载荷下, 面内剪切刚度退化最大可达30%左右; 三维四向编织碳/碳复合材料疲劳加载后强度及刚度均得到了提高; 随着疲劳循环加载数的增加, 三维四向编织碳/碳复合材料中纤维束-基体界面强度逐渐减弱。   相似文献   

3.
采用频率为10 Hz、 应力比为0.1的正弦波研究了室温下循环次数对二维炭毡C/C复合材料(2D炭毡C/C复合材料)的弯曲疲劳强度的影响, 并利用偏光显微镜和扫描电子显微镜对该材料的热解碳组织形貌以及疲劳前后的断口形貌和微观结构进行了观察。结果表明, 2D炭毡C/C复合材料的热解碳结构由光滑层和各向同性层组成, 其疲劳极限为76.5 MPa, 是静态弯曲强度的90%。在不同循环周次的疲劳载荷作用后, 材料的剩余弯曲强度和韧性都得到了提高。在疲劳加载过程中, 纤维/基体的界面结合强度发生弱化, 纤维的协同承载能力得到提高, 使C/C复合材料出现了疲劳强化现象。   相似文献   

4.
采用液相浸渍炭化技术,在压力为75MPa下制备出4D-C/C复合材料,并进行高温热处理。研究静态和动态加载条件下,材料沿厚度方向的弯曲性能及断裂行为。结果表明,循环次数达到10×105次、频率为10 Hz时,材料的临界弯曲疲劳极限是静态弯曲强度的80%。静态弯曲加载情况下,C/C复合材料失效机制取决于试样底层炭纤维的取向。循环疲劳载荷作用下,其失效机制包括基体开裂、纤维-基体界面弱化及纤维断裂。复合材料在循环加载过程中界面结合强度降低,并释放内应力,故增强了纤维拔出以及复合材料的假塑性,疲劳加载后其剩余弯曲强度增加10%左右,而模量降低。疲劳载荷引起材料基体缺陷和裂纹数量的增加及纤维断裂,削弱了长度方向上的热膨胀,使材料热膨胀系数降低。  相似文献   

5.
基于预测单向复合材料纵向拉伸强度的随机核模型,引入纤维单丝剩余强度二参数Weibull模型及纤维单丝与基体界面剩余强度模型,研究建立了单向复合材料纵向拉-拉疲劳寿命及剩余强度的预测模型。对经过一定次数拉-拉疲劳载荷循环后的纤维束抽取其纤维单丝进行剩余强度拉伸试验,建立了纤维单丝剩余强度的二参数Weibull模型,测试单向碳/碳(C/C)复合材料的纤维与基体界面强度。通过单向C/C复合材料算例分析表明,92.5%、90.6%和87.5%应力水平下对数预测寿命与对数试验寿命比值分别为0.79、1.00和1.11,表明所建立的寿命预测模型用于预测单向C/C复合材料疲劳寿命是可行的;纵向拉伸剩余强度预测值与试验值误差在10%以内,吻合较好,表明所提出的剩余强度预测模型具有较高的精度。  相似文献   

6.
3D-C/SiC复合材料在室温和1300℃的拉-拉疲劳行为   总被引:9,自引:1,他引:8  
采用应力比为0.1,频率为60Hz的正弦波在室温和1300℃,10^-4Pa真空中对3D-C/SiC复合材料进行了拉-拉疲劳试验。同时用SEM分析了疲劳断口特征。结果表明:若取循环基数为10^6,1300℃疲劳极限为285MPa,约为抗拉强度的94%;室温疲劳极限为235MPa,约为抗拉强度的85%。1300℃疲劳断口的纤维拔出长度比室温短。疲劳损伤主要起源于纤维束编织交叉部位,随着疲劳循环次数的增加,纤维束周围基体的损伤也不断加剧。  相似文献   

7.
为了解碳纤维束的疲劳特性及疲劳加载后剩余强度的变化, 为建立碳纤维复合材料疲劳性能的细观力学分析模型提供必要的基础数据, 研究设计了碳纤维束静载力学性能及疲劳特性试验方案, 并进行了试验。采用最小二乘法拟合得到了单束碳纤维的应力-寿命(S-N)曲线。对经过预疲劳的碳纤维束试验件进行了剩余强度试验, 采用最小二乘法拟合得到了碳纤维束疲劳加载剩余强度模型。试验结果表明: 试验所用碳纤维束的条件疲劳极限为静拉伸强度的80.47%; 碳纤维束经历一定循环次数的拉-拉疲劳可以提高其强度, 其剩余强度随着疲劳加载循环次数的增加先增加后减小。  相似文献   

8.
2D-SiC/SiC复合材料拉伸加卸载行为   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究国产2D-SiC/SiC复合材料的拉伸损伤行为以及低周循环载荷作用下的力学性能,通过试验和建立加卸载细观力学模型,对其拉伸加卸载行为进行了探讨。建立了单向连续纤维增强陶瓷基复合材料加卸载细观力学模型,得到了初始加载、卸载和重新加载时的应力-应变关系;利用断裂统计方法得到了基体裂纹数随应力变化的关系和复合材料失效判断条件。经过应力转化,将该模型应用于国产二维编织SiC/SiC复合材料。对单向加载试件,采用正交试验方法和最小二乘法得到基体Weibull模量和界面剪切阻力,通过控制材料失效强度与试验结果一致,得到纤维Weibull模量。由上述参数确定的2D-SiC/SiC复合材料拉伸循环加卸载应力-应变曲线与实测曲线吻合很好。通过Matlab编程得到2D-SiC/SiC复合材料单向加载时基体开裂过程图。结果表明,2D-SiC/SiC复合材料失效时,基体裂纹分布相对比较均匀;基体裂纹数随应力单调增加,未出现持平段,表明材料失效时,基体裂纹还没有达到饱和。  相似文献   

9.
采用应力比为0.1,频率为3Hz的正弦波分别在室温和1300°C水氧环境对2D C/SiC复合材料进行了拉-拉疲劳试验.结果表明,若取循环基数为105,窒温和高温水氧环境下的疲劳极限分别为244.8MPa和93.3MPa,高温下的水氧腐蚀是材料失效的主要原因.根据疲劳断口特征分析得出以下结论:在高温水氧环境下,足够大的外载荷将会显著削弱SiO2层的封填裂纹效果,导致氧化性气氛通过外力拉开的微裂纹扩散进入材料内部.外载荷越大,气体在材料内部的扩散越快,复合材料的疲劳寿命越短.  相似文献   

10.
2D-C/SiC缺口试样的拉-拉疲劳损伤   总被引:1,自引:0,他引:1  
侯军涛  乔生儒  韩栋  吴小军  李玫 《材料导报》2005,19(11):140-143
研究了二维正交编织C/SiC双边对称圆弧缺口试样室温和高温真空的拉拉疲劳行为,正弦波疲劳应力比R=0.1,频率60Hz,循环基数106次.循环到规定周次停机,测量试样的共振频率、电阻,并进行SEM观察.结果表明,2D-C/SiC复合材料缺口试样拉-拉疲劳的S-N曲线非常平坦,其疲劳极限是同温度下缺口试样拉伸强度的80%~90%,光滑试样和缺口试样的疲劳极限比值与理论应力集中系数基本相同.缺口试样在疲劳过程中,电阻表征损伤与模量表征损伤的规律基本一致.在疲劳试验初期阶段,缺口附近损伤发展很快,主要表现为产生大量与加载方向垂直的裂纹,随着疲劳次数的增加,损伤发展减缓,但损伤形式逐渐增多,缺口附近与加载方向垂直的裂纹数量明显多于平行加载方向的裂纹数.讨论了电阻表征损伤和模量表征损伤之间的关系.  相似文献   

11.
An important result of our investigations of the fatigue response of Ceramic Matrix Composites (CMCs) is the modeling of the residual strength after fatigue loading. According to the experimental results, the residual tensile strength of 2D needled CMCs firstly increases and then decreases as the number of fatigue cycles increases. Based on the microstructure observations and the wear-in/wear-out mechanisms presented by previous researchers, a model is developed here to characterize the residual strength vs. the number of fatigue cycles for the composites. After parameter identification, the presented model describes the change of the residual strength quite well.  相似文献   

12.
In this paper, the comparison of fatigue life between C/SiC and SiC/SiC ceramic-matrix composites (CMCs) at room and elevated temperatures has been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S–N curves and fatigue limits of cross-ply, 2D and 3D C/SiC and SiC/SiC composites at room temperature, 550 °C in air, 750 °C in dry and humid condition, 800 °C in air, 1000 °C in argon and air, 1100 °C, 1300 °C and 1500 °C in vacuum, have been predicted. At room temperature, the fatigue limit of 2D C/SiC composite with ECFL of 20 % lies between 0.78 and 0.8 tensile strength; and the fatigue limit of 2D SiC/SiC composite with ECFL of 20 % lies between 0.75 and 0.85 tensile strength. The fatigue limit of 2D C/SiC composite increases to 0.83 tensile strength with ECFL increasing from 20 to 22.5 %, and the fatigue limit of 3D C/SiC composite is 0.85 tensile strength with ECFL of 37 %. The fatigue performance of 2D SiC/SiC composite is better than that of 2D C/SiC composite at elevated temperatures in oxidative environment.  相似文献   

13.
热处理对含CSiCTaCC界面C/C复合材料力学性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
以准三维针刺炭纤维毡为预制体, 采用化学气相渗透工艺在预制体中炭纤维/基体炭之间制备C-SiC-TaC-C复合界面, 利用树脂浸渍-炭化工艺对材料进一步增密, 获得含C-SiC-TaC-C界面的C/C复合材料。研究了1400~2500℃不同温度热处理前后复合材料的微观结构和力学性能。结果表明: 热处理前, SiC-TaC界面为管状结构, 复合材料的抗弯强度为241.6 MPa, 以脆性断裂为主; 经1400~1800℃热处理后, TaC界面破坏呈颗粒状, 复合材料的平均抗弯强度下降到238.9~226.1 MPa, 其断裂方式不变, 但断裂位移由0.7 mm增至1.0 mm; 经2000~2500℃热处理后, SiC、 TaC界面均受到破坏, 复合材料平均抗弯强度急剧下降至158.7~131.8 MPa, 断裂方式由脆性断裂转变为假塑性断裂。   相似文献   

14.
以乙醇和甲烷为前驱体,采用化学气相渗透工艺制备了三维五向编织C/C复合材料。利用偏光显微技术分析了复合材料的微观结构,考察了复合材料的静态弯曲性能和疲劳行为,研究了不同循环加载周期对复合材料弯曲强度和力学行为的影响。结果表明:采用混合前驱体可成功制备高织构3DC/C复合材料,材料的平均弯曲强度为379.2 MPa,其疲劳极限为静态弯曲载荷的80.3%。加载循环应力后, C/C复合材料的弯曲强度在不同周次均有所提升,循环105周后弯曲强度的增幅达16.8%。材料弯曲承载时的"屈服区"随着循环次数的增加出现先增大后减小的变化趋势,这与材料疲劳过程中纤维与基体、基体与基体的结合状态有关。  相似文献   

15.
《复合材料学报》2008,25(5):91-97
以针刺碳纤维整体毡为预制体,采用化学气相渗透工艺对预制体纤维进行PyC/SiC/TaC的多层复合模式的涂层改性, 然后采用化学气相渗透和热固性树脂浸渍-化进行增密,制备出新型C/C复合材料。对复合材料的微观结构和力学性能进行了研究。结果表明:包覆在碳纤维表面的PyC/SiC/TaC多层结构均匀致密、无裂纹,在C/C复合材料中形成空间管状网络结构;改性后C/C复合材料的抗弯强度和韧性均大大提高, 平均抗弯强度达到522 MPa,断裂位移达到1.19mm;复合材料弯曲断裂形式表现为脆性断裂,经过2000℃高温热处理以后,复合材料的抗弯强度下降,但最大断裂位移增大,弯曲断裂形式由脆性断裂转变为良好的假塑性断裂。   相似文献   

16.
The tensile-tensile fatigue behavior of unidirectional C/SiC ceramic matrix composites at room and elevated temperature has been investigated. An approach to estimate the interface shear stress of ceramic matrix composites under fatigue loading has been developed. Based on the damage mechanisms of fiber sliding relative to matrix in the interface debonded region upon unloading and subsequent reloading, the unloading interface reverse slip length and reloading interface new slip length are determined by the fracture mechanics approach. The hysteresis loss energy for the strain energy lost per volume during corresponding cycle is formulatd in terms of interface shear stress. By comparing the experimental hysteresis loss energy with the computational values, the interface shear stress of unidirectional C/SiC ceramic composites corresponding to different cycles at room and elevated temperatures has been predicted.  相似文献   

17.
界面改性涂层对调节复合材料的力学性能起到重要作用。特别是在气相渗硅(GSI)制备C_f/SiC复合材料时,合适的界面改性涂层一方面保护C纤维不受Si反应侵蚀,另一方面调节C纤维和SiC基体的界面结合状况。通过在3D-C纤维预制件中制备先驱体浸渍-裂解(PIP)SiC涂层来进行界面改性,研究了PIP-SiC涂层对GSI C_f/SiC复合材料力学性能的影响。结果表明:无涂层改性的GSI C_f/SiC复合材料力学性能较差,呈现脆性断裂特征,其弯曲强度、弯曲模量和断裂韧性分别为87.6 MPa、56.9GPa和2.1 MPa·m~(1/2)。具有PIP-SiC界面改性涂层的C_f/SiC复合材料力学性能得到改善,PIP-SiC涂层改性后,GSI C_f/SiC复合材料的弯曲强度、弯曲模量和断裂韧性随着PIP-SiC周期数的增加而降低,PIP-SiC为1个周期制备的GSI C_f/SiC复合材料的力学性能最高,其弯曲强度、弯曲模量、断裂韧性分别为185.2 MPa、91.1GPa和5.5 MPa·m~(1/2)。PIP-SiC界面改性涂层的作用机制主要体现在载荷传递和"阻挡"Si的侵蚀2个方面。  相似文献   

18.
为了研究三维碳纤维编织体增强碳化硅陶瓷基复合材料(3D C/SiC)在疲劳过程中的损伤演化并建立其电阻变化率(ΔR/R0)随疲劳周次变化的模型, 对其进行了应力比为0.1、 频率为20 Hz、 最大疲劳应力为250、 255、 260 MPa的拉-拉疲劳试验, 通过电阻增量仪器测量了连续3D C/SiC在疲劳中的电阻变化率。实验结果表明, ΔR/R0除首次循环降低外, 随着疲劳周次的增加呈缓慢增加、 台阶式增加和急剧增加3个阶段。根据损伤力学理论, 以ΔR/R0为损伤参量, 得到了ΔR/R0随疲劳周次变化的模型, 该模型结果与实验结果吻合较好。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号