首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 196 毫秒
1.
基于变分渐近均匀化方法建立能预测智能材料电-磁-热-弹全耦合性能的细观力学模型。从智能材料电-磁-热-弹耦合本构方程中推导能量泛函变分表达式出发,利用单胞细观尺度与宏观尺度比作为小参数将材料的能量泛函渐近扩展为系列近似泛函,通过最小化近似泛函求解场变量的波动函数,从而建立逼近物理和工程真实性的细观力学模型,并通过有限元数值实现。通过BaTiO3-CoFe2O4纤维/环氧树脂复合材料算例表明:构建的细观力学模型可准确预测电-磁-热-弹耦合性能和重构多物理场局部分布。   相似文献   

2.
饱和岩土类多孔材料内固、液相不同属性产生的各向异性和多孔微结构的不均匀性使得材料的细观力学特性计算变得十分复杂。为准确预测岩土类材料的有效弹性性能和细观应力-应变场,基于Biot多孔弹性介质理论,建立可描述岩土类多孔材料固液相运动的能量泛函和相应的多孔弹性本构关系;利用细、宏观尺度比作为小参数将能量变分泛函渐近扩展为系列近似泛函;以场变量波动函数为未知量,通过解决近似泛函的最小化问题(驻值问题)得到波动函数的解析解,从而建立逼近物理和工程真实性的细观力学模型,并通过有限元技术得以数值实现。多孔介质材料细观力学特性算例表明:与经典均匀化理论(将液体类比为具有较高泊松比的固体材料)相比,基于变分渐近均匀化细观模型预测的多孔介质材料细观力学特性更精确,尤其是能准确重构多孔微结构内局部应力-应变场分布,为损伤破坏、局部断裂分析奠定了坚实基础。   相似文献   

3.
基于一种新颖的建模方法——变分渐近均匀化理论,建立了磁致伸缩复合材料的细观力学模型,以准确预测材料的有效属性和局部应力、磁通密度分布。从建立磁致伸缩复合材料的总磁焓入手,将总磁焓中的场变量精确解表示为平均值和波动函数之和。根据最小势能原理,利用细宏观尺度比作为小参数对约束条件下总磁焓求驻值(最小化)建立细观力学模型。为分析实际工程中的微观结构,利用有限元离散技术实现构建模型的数值模拟。CoFe_2O_4/环氧树脂复合材料数值算例结果表明:构建的模型可准确预测磁致伸缩复合材料的有效属性和局部场分布,并可扩展到其他多相复合材料的有效属性和局部场分析中。  相似文献   

4.
为准确预测非均质复合材料的有效热导率和局部温度场分布,采用单胞变分渐近均匀化方法构建了一种新的细观力学模型。首先从非均质连续体热传导变分问题入手,使用变分渐近法将其细观力学模型转换为约束条件下泛函的最小化——取驻值问题;使用有限元法(FEM)推导了离散形式能量泛函的最小化求解过程;根据宏观性能(如全局温度及相应的梯度和波动函数)重构单胞的局部温度场和热通量。采用多个二元复合材料算例验证了所构建理论和程序的有效性和准确性。  相似文献   

5.
基于变分渐近均匀化理论框架建立表征线性黏弹性聚合物基复合材料有效蠕变响应和宏观应力-应变行为的细观力学模型。从线性黏弹性聚合物基复合材料本构方程中构建能量泛函变分表达式出发,采用变分渐近法求解线性黏弹性聚合物基复合材料的有效蠕变柔度系数,并以此为基础计算聚合物基复合材料的时变和单轴拉伸行为。通过算例验证了构建模型的适用性和准确性。由于所有计算均在时间域内完成,不再需要传统线黏弹性复合材料使用的Laplace转换和反演,计算效率大为提高。   相似文献   

6.
钟轶峰  余文斌 《工程力学》2012,29(6):314-319
为有效分析压电复合材料层合板在热、电和载荷下的单向耦合热电弹性问题,基于变分渐近方法(VAM)建立热电弹性简化模型。首先根据虚功原理推导三维压电复合板总势能泛函。然后基于变分渐近法,利用板固有的小参数将三维总势能泛函渐近扩展为系列二维泛函,同时将近似泛函转换为Reissner形式以便实际工程应用。最后建立三维场重构关系以正确预测沿厚度方向的应力分布。计算结果显示:基于该模型重构的沿厚度方向横向剪切应力较古典层合理论和一阶剪切变形理论精确度更好,与三维有限元精确解相一致,表明该模型在压电复合材料层合板应力预测上的有效性。  相似文献   

7.
涂层可对纤维起到表面改性及调节界面残余应力的作用,对宏观性能有重要的影响。为准确预测多场环境下涂层-纤维增强磁电弹性(MEE)材料的有效属性和局部场分布,基于变分渐近理论建立均匀化细观力学模型。从非均匀连续介质的总电磁焓入手,利用材料细观尺度远小于宏观尺度的特征,将多物理场下细观力学建模转换为约束条件下总电磁焓的最小化问题。为分析工程应用中智能材料的涂层-纤维细观结构,采用有限元技术实现该模型的数值模拟。通过与有限元结果的对比分析表明:构建的模型可准确预测涂层-纤维增强MEE材料的多物理场行为,不同厚度和刚度的涂层对应力集中和有效属性有较大的影响,同时揭示了许多独特的电-磁交互现象,为预测和优化涂层-纤维增强MEE材料的性能提供有益的参考。  相似文献   

8.
为有效模拟形状记忆合金增强聚合物基复合材料(SMA/PMCs)有效时变和伪弹性响应,基于变分渐近理论框架构建增量型细观力学模型。首先分别导出聚合物和形状记忆合金增量本构方程,建立统一的本构方程;以此为基础推导出能量泛函的变分表达式。考虑材料的时变和非线性特征,建立与求解切向瞬时有效矩阵有关的增量过程,并通过有限元数值实现。通过数值算例表明:构建的模型可用于模拟SMA/PMCs在不同加载率和温度下的有效时变、伪弹性响应,准确捕捉聚合物基体黏弹性诱发的复合材料率相关、滞回行为等。  相似文献   

9.
为有效模拟新型多功能智能材料——金属芯压电压磁纤维/聚合物基复合材料(MPPF/PMCs)的有效时变、非线性和多物理场响应,基于变分渐近法建立增量形式的细观力学模型。首先分别导出聚合物、压电压磁材料和金属芯的增量本构关系,建立统一的本构方程;以此为基础,推导出能量变化泛函的变分表达式。考虑材料的时变和非线性特征,建立与求解瞬时切线电-磁-力耦合矩阵有关的增量过程;通过最小化近似泛函求解场变量的波动函数,并通过有限元数值实现,从而建立逼近物理和工程真实性的细观力学模型。通过含铝芯压电(BaTiO_3)压磁(CoFe_2O_4)聚合物基复合材料算例表明:构建的模型可用于模拟不同多物理场下MPPF/PMCs的有效响应,可准确捕捉纤维与基体间的应力突变现象。  相似文献   

10.
基于变分渐近法建立具有周期性微结构的金属基复合材料(MMCs)细观力学模型及相应的增量方程,以准确预测其典型的热弹塑性行为和初始屈服面。利用细、宏观尺度比很小的特点,对单胞变分能量泛函变化进行渐近扩展,计算得到有效瞬时弹塑性刚度矩阵和热应力矩阵;利用迭代均质化及局域化技术模拟MMCs的非线性热弹塑性性能,并通过有限元技术实现相应的数值模型。算例分析表明:该模型能较好地预测MMCs的初始屈服面,并模拟热弹塑性耦合行为,研究成果为MMCs的进一步研究和实际应用提供了技术支撑。   相似文献   

11.
发展了一种细观力学有限元分析方法——拟真实的参数化双随机分布模型, 该模型综合考虑了纤维增强树脂基复合材料的真实微结构特点和纤维单丝综合力学性能测试结果的离散性特征, 模拟了复合材料中纤维排列和强度分布的随机性。借助移动窗口法研究了该参数化双随机分布模型的可靠性, 确定了其代表性体积单元的尺寸。基于能量法原理推导了单向复合材料的弹性模量预测公式, 结合能量法和渐进失效分析方法, 利用该细观力学有限元方法分别预测了单向纤维增强树脂基复合材料T300/5228的弹性模量和强度性能。数值模拟结果和大部分试验结果吻合良好, 表明发展的细观力学有限元方法能够较好地预测复合材料的力学性能。   相似文献   

12.
This study introduces two micromechanical modeling approaches to analyze spatial variations of temperatures, stresses and displacements in particulate composites during transient heat conduction. In the first approach, a simple micromechanical model based on a first order homogenization scheme is adopted to obtain effective mechanical and thermal properties, i.e., coefficient of linear thermal expansion, thermal conductivity, and elastic constants, of a particulate composite. These effective properties are evaluated at each material (integration) point in three dimensional (3D) finite element (FE) models that represent homogenized composite media. The second approach treats a heterogeneous composite explicitly. Heterogeneous composites that consist of solid spherical particles randomly distributed in homogeneous matrix are generated using 3D continuum elements in an FE framework. For each volume fraction (VF) of particles, the FE models of heterogeneous composites with different particle sizes and arrangements are generated such that these models represent realistic volume elements “cut out” from a particulate composite. An extended definition of a RVE for heterogeneous composite is introduced, i.e., the number of heterogeneities in a fixed volume that yield the same expected effective response for the quantity of interest when subjected to similar loading and boundary conditions. Thermal and mechanical properties of both particle and matrix constituents are temperature dependent. The effects of particle distributions and sizes on the variations of temperature, stress and displacement fields are examined. The predictions of field variables from the homogenized micromechanical model are compared with those of the heterogeneous composites. Both displacement and temperature fields are found to be in good agreement. The micromechanical model that provides homogenized responses gives average values of the field variables. Thus, it cannot capture the discontinuities of the thermal stresses at the particle-matrix interface regions and local variations of the field variables within particle and matrix regions.  相似文献   

13.
The mechanical and physical properties of materials change with time. This change can be due to the dissipative characteristic of materials like in viscoelastic bodies and/or due to hostile environmental conditions and electromagnetic fields. We study time-dependent response of active fiber reinforced polymer composites, where the polymer constituent undergoes different viscoelastic deformations at different temperatures, and the electro-mechanical and piezoelectric properties of the active fiber vary with temperatures. A micromechanical model is formulated for predicting effective time-dependent response in active fiber composites with thermal, electrical, and mechanical coupling effects. In this micromechanical model limited information on the local field variables in the fiber and matrix constituents can be incorporated in predicting overall performance of active composites. We compare the time-dependent response of active composites determined from the micromechanical model with those obtained by analyzing the composites with microstructural details. Finite element (FE) is used to analyze the composite with microstructural details which allows quantifying variations of field variables in the constituents of the active composites.  相似文献   

14.
在分析炭黑填充橡胶复合材料的宏观与细观特征之间联系的基础上,提出了具有随机分布形态的代表性体积单元,推导并应用了周期性细观结构的边界约束条件,建立了三维多颗粒夹杂代表性体积单元的数值模型,对炭黑填充橡胶复合材料的宏观力学行为进行了模拟仿真。研究表明,该模型通过周期性边界条件的约束保证了宏观结构变形场和应力场的协调性;计算得到的炭黑填充橡胶复合材料的弹性模量明显高于未填充橡胶材料,并随着炭黑颗粒所占体积分数的增加而增大;该模型对复合材料有效弹性模量的预测结果与实验结果吻合较好,而且比Bergstrom三维模型的预测结果更好,证实了该模型能够用于炭黑颗粒增强橡胶基复合材料有效性能的模拟分析。  相似文献   

15.
A multiscale nonlinear finite element modeling technique is developed in this paper to predict the progressive failure process for composite laminates. A micromechanical elastic–plastic bridging constitutive model, which considers the nonlinear material properties of the constituent fiber and matrix materials and their interaction and the damage and failure in fibrous composites at the fiber and matrix level, is proposed to represent the material behavior of fiber-reinforced composite laminates. The micromechanics constitutive model is employed in the macroscale finite element analysis of structural behavior especially progressive failure process of the fiber-reinforced composites based on a 4-node 24-DOF shear-locking free rectangular composite plate element.  相似文献   

16.
Typical finite element formulations and models for unidirectional composite materials are reviewed. The application of micromechanical finite element analysis to the modelling of unidirectional fibre-reinforced metal-matrix composites is demonstrated by presenting some studies from recent publications. It is shown that while analytical models offer a simple tool for obtaining the overall response of composites, finite element analysis provides more accurate and detailed characterisation of composite properties for complicated geometries and constituent property variations. Various effects that influence the stress/strain response and fibre/matrix deformation of composites are studied through modelling. These effects include the fibre coating and reaction layer, fibre shape and distribution, metallurgical and environmental factors, stress distributions and damage. It is demonstrated that the properties and constituent phase interaction of metal-matrix composites are best modelled by finite element analysis. It is emphasized that in order to obtain good predictions, the models must be coupled with first-hand characterisations of the constituent phases and their interactions, including the thermal history of the specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号