首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为了扩宽尼龙6(PA6)的工程应用领域,首先,通过熔融挤出制备了LiCl/PA6复合材料;然后,利用XRD、DSC、流变仪及电子拉伸试验机等研究了LiCl含量对PA6结晶行为和力学性能的影响及结晶的受限机制。结果表明:随LiCl含量的增加, LiCl/PA6复合体系的成核温度、晶体生长温度及熔融温度均向低温方向移动;成核密度和速率均逐渐减小,导致结晶能力下降,结晶度由原来的36.5%降低为5.6%;γ晶结晶度逐渐降低,而α晶结晶度先增大后减小, γ晶与α晶发生转变。此外, LiCl/PA6复合材料的拉伸强度和冲击强度均先增大后减小;当LiCl含量为6.0wt%时,冲击强度达到最大值7.9 kJ/m2,是纯PA6的冲击强度(5.5 J/m2)的1.44倍。   相似文献   

2.
用邻苯二甲酸酐对芳纶纤维(AFs)进行刻蚀处理,以期改善其与回收聚对苯二甲酸乙二醇酯(R-PET)的界面相容性,同时作为刻蚀剂的邻苯二甲酸酐也是R-PET的扩链剂,有利于提高AFs/R-PET复合材料的特性黏度从而改善其力学性能,实现其从废旧回收品到工程塑料的转化。采用FE-SEM,XPS,MFR,DSC,TG分别对AFs的表面形貌和元素含量以及AFs/R-PET复合材料的冲击断面形貌、热性能和流动性能进行测试。结果表明:随着刻蚀时间的延长,AFs表面粗糙程度逐渐增大、表面含氧量也增大。此外,相对于纯R-PET,AFs/R-PET复合材料更容易结晶,其弯曲强度和冲击强度也有较大提高,当加入刻蚀时间为6h的AFs时,所得AFs/R-PET复合材料的特性黏度最大,达到0.9343dL·g-1,综合力学性能达到最佳。  相似文献   

3.
以枝化剂为超支化聚酰胺6(PA6)的引发剂,配以含有端羧基官能团的有机改性剂改性的有机蒙脱土(O-MMT),经原位开环接枝聚合制备了O-MMT/超支化PA6复合材料。通过FTIR和TEM表征了超支化PA6与O-MMT的接枝情况以及O-MMT在基体中的分散形态。研究了O-MMT对超支化PA6结晶性能、熔体流动性能和力学性能的影响。结果表明:O-MMT呈剥离态和插层态分散于超支化PA6基体中,且与PA6分子链段产生化学键合,形成网络交联结构。网络交联结构使O-MMT/超支化PA6复合材料与超支化PA6相比熔体流动指数急剧下降。另外,O-MMT使超支化PA6的α晶型消失,且使仅有γ晶型的超支化PA6的结晶度降低。但随O-MMT 含量增加,O-MMT/超支化PA6复合材料的强度逐步提高,拉伸强度从38.4 MPa提高至60.8 MPa。复合材料的韧性也得到大幅度提高,断裂伸长率从2.1%提高至70.1%,无缺口冲击强度从20.3 kJ/m2急剧提高至291.8 kJ/m2。   相似文献   

4.
选取三种不同的纳米蒙脱土(nMMT)(分别为钠基蒙脱土(Na-MMT)、氨基酸改性nMMT(OMMT-A)和CH3(CH217N(CH3)[(CH2CH2OH)2]+改性nMMT(OMMT-B)),通过熔融共混法制备了不同改性的纳米蒙脱土/聚酰胺6-66(nMMT/PA6-66)复合材料,研究了不同表面改性对nMMT/PA6-66复合材料的结晶、流变和力学等性能的影响。结果表明,nMMT的加入促进了nMMT/PA6-66复合材料中γ晶的形成,提高了复合材料的结晶温度,但加入OMMT-B后OMMT-B/PA6-66复合材料的异相成核作用效率有一定程度减弱;同时,OMMT-B能更好地改善PA6-66的储能模量,提高PA6-66的流动性。力学性能测试表明,nMMT提高了nMMT/PA6-66复合材料的强度,降低了复合材料的韧性,但效果不同。其中,加入OMMT-B后OMMT-B/PA6-66复合材料的韧性几乎保持不变,拉伸强度和弯曲强度相对于纯PA6-66分别提高了26%和28%,表现出最佳的综合力学性能。综合研究结果表明,不同表面改性nMMT对PA6-66性能的影响主要取决于改性剂和PA6-66分子链之间相互作用的强弱。   相似文献   

5.
为了获得界面性能优异的玻璃纤维增强尼龙6复合材料,利用含有聚多巴胺(PDA)和六方氮化硼(h-BN)的复合涂层对玻璃纤维进行表面改性处理,制备出玻璃纤维增强尼龙6复合材料(GF/PA6)。采用XRD、XPS、SEM、接触角测量仪对玻璃纤维晶型结构、化学结构、表面形貌和粗糙度进行表征。同时考察了h-BN的不同添加量对复合材料力学性能、热稳定性能、动态热机械性能和结晶性能的影响。结果表明:经过改性处理的玻璃纤维表面被均匀的复合涂层所覆盖,显著增加了玻璃纤维的表面粗糙度、表面活性和化学键能,大大提高了玻璃纤维与尼龙6树脂基体之间的界面啮合作用,且复合涂层的加入能够诱导PA6晶型由γ晶型转变为α晶型,h-BN含量为0.75%时的复合材料力学性能达到最高,拉伸强度达到129.8 MPa,相比改性前提高了79.2%,弯曲强度达到194.8 MPa,相比改性前提高了32.2%。储能模量达到1 742 MPa,相比改性前提高了69.9%。  相似文献   

6.
利用差示扫描量热仪(DSC)研究了炭纤维(CF)表面异氰酸酯化改性后阴离子接枝尼龙6(PA6)对CF/PA6复合材料中PA6的多重熔融行为的影响。结果表明:CF的加入和其表面的接枝改性都会改变PA6等温结晶所得晶体的晶型和结晶度,且此作用与等温结晶的温度有关。较低的结晶温度下,未接枝CF表面的诱导作用有利于基体PA6形成稳定的α晶型;而表面接枝改性CF与PA6界面相互作用的提高会阻碍基体形成稳定的α晶型,主要形成γ和γ^o晶型。较高温度下,未改性CF表面的诱导作用减弱,基体与纯PA6一样主要形成γ晶型;而接枝改性CF则使得基体倾向形成亚稳定的γ^o型结晶。且未接枝CF的加入使得PA6的表观相对结晶度增大。而CF接枝改性后复合材料的表观相对结晶度减小。  相似文献   

7.
以己内酰胺(CL)和6-氨基己酸(ACA)为聚合反应单体,用Hummers法制备氧化石墨烯(GO),再以GO为纳米填料用原位开环聚合法制备了GO改性PA6纳米复合材料(PA6/GO),并对PA6/GO纳米复合材料的结构及性能进行了研究。结果表明,PA6的黏均分子量达到104数量级,但加入过多的GO使PA6的分子量降低。形貌分析表明,GO均匀地分散在PA6基体中,并诱导了PA6基体的晶型由α晶型转变成γ晶型。同时,GO作为异相成核剂促进了PA6/GO复合材料中PA6基体的结晶,提高了PA6/GO复合材料的结晶度。拉伸测试结果表明,随着GO的加入PA6/GO纳米复合材料的拉伸强度先提高后降低,GO加入量为0.4份时拉伸强度达到最大值61.72 MPa,比纯PA6(48.52 MPa)提高了27.21%。导热性能分析表明含1.0份GO的PA6/GO纳米复合材料其50℃和100℃的热导率分别为0.317 W/(m·K)和0.280 W/(m·K),较纯PA6分别提高了33.19%和33.23%。  相似文献   

8.
为改性尼龙6,以含有脂肪族结构的超支化环氧树脂(AHEP)作为尼龙6的改性剂,制备出不同质量比的AHEP-PA6共混体系。利用熔融指数仪、广角X射线衍射分析仪(WAXD)、力学万能试验机及扫描电子显微镜测试AHEP-PA6共混体系的加工流动性、结晶性能和力学性能。结果表明:AHEP的加入使PA6的结晶度有一定的提高,PA6的晶型发生变化,γ晶型弱化,转化为稳定性较好的α晶型。AHEP在PA6基体中能够均匀分散,二者间较强的相互作用及微交联结构提高了PA6的力学性能,共混体系断面形貌呈现原位增韧增强特征。  相似文献   

9.
纳米ZnO对MC尼龙结构和性能的影响   总被引:15,自引:1,他引:14       下载免费PDF全文
采用原位聚合反应制备了纳米ZnO/MC尼龙6复合材料。对所制备的复合材料进行力学性能、 形貌、 结构检测及DSC、 XRD分析, 结果表明: 复合材料中的ZnO粒径小于100nm, 分布均匀; 纳米ZnO/MC尼龙6复合材料拉伸强度比纯MC尼龙6提高20%; 断裂伸长率提高33%; 弯曲模量提高36%; 冲击强度提高87%。纳米ZnO的加入对α晶型的衍射特征峰影响不大, 不改变尼龙6的结晶形态, 但使晶粒度加大, 结晶度减小; 动态高温XRD分析表明, 加入纳米ZnO, 能提高MC尼龙融熔温度, 纳米ZnO/MC尼龙6复合材料的结晶形态和相对结晶度在高低温度间基本是可逆的。   相似文献   

10.
探究了热处理对聚酰胺6(PA6)在碳纤维(CF)表面的结晶行为及其界面力学性能的影响。利用差示扫描量热法(DSC)、偏光显微镜(POM)观察法等分析手段考察了热处理对PA6在CF表面结晶行为的影响,揭示了在热处理过程中,PA6进行链段重排,形成小且不完善的新结晶,导致结晶度的上升以及界面横晶形貌的完善;进一步通过单丝微球脱粘实验和单向CF/PA6复合材料横向拉伸实验考察了热处理对PA6与CF的界面结合性能的影响,揭示了经退火热处理的试样由于弱界面和应力集中的减少使界面剪切强度增加且单位体积断裂能下降。  相似文献   

11.
刘旭  徐海  徐立新  张宏  周琼 《材料工程》2021,49(4):128-134
通过硝酸酸化处理及尼龙溶液浸渍上浆处理对碳纤维(CF)进行表面改性,制备高强度、高模量,同时具有低熔指和优异加工性能的CF增强尼龙6(PA6)复合材料。采用扫描电镜(SEM)、差示扫描量热仪(DSC)和熔融指数仪等方法,对复合材料的微观结构、力学性能和结晶行为进行测试和表征。结果表明,经过PA6溶液浸渍上浆处理后的CF表面形成了一层PA6薄膜覆盖层,大大增强了CF与PA6基体的结合力,改善了CF的分散性,提升了复合材料整体的强度与模量,改性CF加入量为8%(质量分数)时复合材料拉伸强度提升80.8%,弹性模量提升513.9%。进一步对复合材料结晶行为的分析表明,改性CF的加入能够促进PA6由γ晶型向更稳定的α晶型转变,提高其结晶温度及结晶速率,使复合材料的结晶更加均匀、完善,从而提高体系黏度,降低复合材料熔融指数,显著提升了复合材料的加工性能。  相似文献   

12.
为防止纳米羟基磷灰石(nano HAP)粉末的团聚,采用溶剂沉淀法制备了nano HAP/聚酰胺6(PA6)复合粉末,并对粉末进行热压成型制得nano HAP/PA6复合材料。然后,通过FTIR、XRD和SEM对nano HAP/PA6复合材料的成分、结构和形貌进行了表征,并对复合材料的热稳定性、力学性能和细胞相容性进行了检测。结果表明:所制备的nano HAP/PA6复合材料结晶体大小均匀,且PA6只存在α型结晶;由于nano HAP与PA6界面上形成新的氢键和COO—Ca,复合材料具有良好的综合性能;在低于350℃时,nano HAP/PA6复合材料不会发生裂解,力学性能与人骨匹配,50wt%nano HAP/PA6复合材料的弯曲强度、压缩强度和弹性模量分别为146.87MPa、98.44MPa和5.44GPa。MG-63骨瘤细胞在nano HAP/PA6复合材料表面粘附和生长状况良好,说明nano HAP/PA6复合材料具有良好的细胞相容性。所得结论表明nano HAP/PA6复合材料在骨修复方面具有应用价值。  相似文献   

13.
采用超细聚四氟乙烯(PTFE)粉末作为减摩功能填料, 碳纤维(CF)作为增强材料, 制备了CF-PTFE/PA6复合材料; 利用60Co-γ射线对该复合材料进行了辐射改性, 对复合材料的力学性能和摩擦学性能进行了研究, 并采用SEM观察了该复合材料冲击断面的表面形貌。结果表明: 添加8%的PTFE和13%的CF的CF-PTFE/PA6复合材料不仅具有较好的力学强度和摩擦学性能, 而且经过120 kGy辐射处理后, 其弯曲强度、拉伸强度和冲击强度分别提高了9.9%、7.9%和11.7%。   相似文献   

14.
采取不同浓度的磷酸水溶液对芳纶纤维进行表面处理, 并对不同处理条件下芳纶纤维的单丝强度、表面性质及其环氧树脂复合材料的界面性能进行了分析和测试。结果表明: 20 wt %磷酸溶液处理的芳纶纤维, 纤维表面含氧官能团含量最高; 继续提高磷酸溶液的浓度, 含氧官能团含量下降, 纤维表面趋于平整, 单丝强度上升。用20 wt %磷酸溶液处理芳纶纤维, 纤维/ 环氧树脂基复合材料的层间剪切强度达到62 MPa , 界面剪切强度提高18 % , 是一种简单有效的表面处理方法。纤维表面粗糙度和纤维表面含氧官能团的数量是影响芳纶纤维/ 环氧树脂复合材料界面结合性能的关键因素。   相似文献   

15.
紫外线辐照HDPE与尼龙-6共混材料结构与力学性能的研究   总被引:1,自引:0,他引:1  
研究了紫外线辐照HDPE与PA6共混材料的微观形态、结晶结构、熔融行为及力学性能。SEM、WAXD、DSC结果表明,随紫外线辐照时间的增加,共混物中PA6的粒径减小,与基体作用加强,HDPE晶面间距增大,熔点、结晶度降低,熔程变窄。力学性能测试结果表明,紫外线辐照能明显提高共混材料(uHDPE/PA6:90/10)的拉伸强度、断裂伸长率、拉伸断裂能和冲击强度。当辐照时间超过144h由于HDPE热稳定性明显降低,共混过程中HDPE热降解严重,共混物的韧性突降。  相似文献   

16.
废旧轮胎粉/POE-g-MAH复合改性 PA6的制备与性能研究   总被引:1,自引:1,他引:0  
以PA6为基体、废旧轮胎粉与POE-g-MAH为复合增韧剂,采用双螺杆挤出机,制备了废旧轮胎粉/POE-g-MAH/PA6复合材料,研究了复合增韧剂含量对复合材料力学性能、熔融与结晶行为、晶体结构、热性能以及微观形貌等的影响.结果表明,复合材料的冲击强度和断裂伸长率随复合增韧剂含量的增加而显著提高,而拉伸强度和弯曲强度则正好相反;DSC、XRD和TGA结果表明,复合增韧剂的加入,提高了PA6基体的结晶速率,却降低了其结晶度、晶体结构的完整性和耐热性能.  相似文献   

17.
不同改性剂对PP/木粉复合材料性能的影响   总被引:1,自引:0,他引:1  
研究了苯甲酸(BA)、硬脂酸(SA)、甲苯-2,4-二异氰酸酯(TDI)对聚丙烯/木粉复合材料的改性效果。结果表明,木粉经改性剂处理后,表面极性减弱,与聚丙烯的界面张力降低,相容性提高;所有改性剂均可提高复合材料的拉伸强度、冲击强度以及熔体流动性能,但对弯曲强度影响不大。用TDI/SA复合处理木粉,复合材料的综合性能最好。扫描电镜(SEM)分析表明,木粉经过处理后,木粉与聚丙烯间界面较模糊。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号