首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In this paper, we propose a low complexity decoder architecture for low-density parity-check (LDPC) codes using a variable quantization scheme as well as an efficient highly-parallel decoding scheme. In the sum-product algorithm for decoding LDPC codes, the finite precision implementations have an important tradeoff between decoding performance and hardware complexity caused by two dominant area-consuming factors: one is the memory for updated messages storage and the other is the look-up table (LUT) for implementation of the nonlinear function Ψ(x). The proposed variable quantization schemes offer a large reduction in the hardware complexities for LUT and memory. Also, an efficient highly-parallel decoder architecture for quasi-cyclic (QC) LDPC codes can be implemented with the reduced hardware complexity by using the partially block overlapped decoding scheme and the minimized power consumption by reducing the total number of memory accesses for updated messages. For (3, 6) QC LDPC codes, our proposed schemes in implementing the highly-parallel decoder architecture offer a great reduction of implementation area by 33% for memory area and approximately by 28% for the check node unit and variable node unit computation units without significant performance degradation. Also, the memory accesses are reduced by 20%.  相似文献   

2.
This paper presents a memory efficient partially parallel decoder architecture suited for high rate quasi-cyclic low-density parity-check (QC-LDPC) codes using (modified) min-sum algorithm for decoding. In general, over 30% of memory can be saved over conventional partially parallel decoder architectures. Efficient techniques have been developed to reduce the computation delay of the node processing units and to minimize hardware overhead for parallel processing. The proposed decoder architecture can linearly increase the decoding throughput with a small percentage of extra hardware. Consequently, it facilitates the applications of LDPC codes in area/power sensitive high-speed communication systems  相似文献   

3.
DVB-S2标准低密度奇偶校验码(LDPC)译码器在深空通信中面临着低复杂度、高灵活性及普适性方面的迫切需求。通过对LDPC译码算法中量化结构的研究,提出一种动态自适应量化结构的设计方法。该方法在常规均匀硬件量化的基础上,提出了修正化Min-Sum译码算法中的数据信息初始化及迭代译码的动态自适应量化结构,解决了DVB-S2标准LDPC码译码时存在的校验节点运算与变量节点运算之间的复杂度不平衡的问题,并由此提高了译码器的译码性能。实验证明,以DVB-S2标准LDPC码中码长为16 200,码率为1/2的为例,提供动态自适应量化结构与常规的均匀量化结构相比,节省硬件资源为4%。此外,动态自适应量化结构支持动态可配置功能,保证了DVB-S2标准LDPC译码器的灵活性及普适性。  相似文献   

4.
Low-Complexity High-Speed Decoder Design for Quasi-Cyclic LDPC Codes   总被引:1,自引:0,他引:1  
This paper studies low-complexity high-speed decoder architectures for quasi-cyclic low density parity check (QC-LDPC) codes. Algorithmic transformation and architectural level optimization are incorporated to reduce the critical path. Enhanced partially parallel decoding architectures are proposed to linearly increase the throughput of conventional partially parallel decoders through introducing a small percentage of extra hardware. Based on the proposed architectures, a (8176, 7154) Euclidian geometry-based QC-LDPC code decoder is implemented on Xilinx field programmable gate array (FPGA) Virtex-II 6000, where an efficient nonuniform quantization scheme is employed to reduce the size of memories storing soft messages. FPGA implementation results show that the proposed decoder can achieve a maximum (source data) decoding throughput of 172 Mb/s at 15 iterations  相似文献   

5.
低密度奇偶校验(LDPC)码有着较强的纠错能力,已被确定为第四代移动通信技术中首选码字。分析对比了几种LDPC译码算法的过程,基于硬件可实现性这一研究热点,对传统的译码算法进行了优化,提出一种易于硬件实现的LDPC译码算法。仿真结果表明:归一化最小和算法在不增加迭代次数,码长较长的情况下也有着很好的译码性能,适合在LDPC译码器的硬件实现中推广。  相似文献   

6.
Low-density parity-check (LDPC) codes and convolutional Turbo codes are two of the most powerful error correcting codes that are widely used in modern communication systems. In a multi-mode baseband receiver, both LDPC and Turbo decoders may be required. However, the different decoding approaches for LDPC and Turbo codes usually lead to different hardware architectures. In this paper we propose a unified message passing algorithm for LDPC and Turbo codes and introduce a flexible soft-input soft-output (SISO) module to handle LDPC/Turbo decoding. We employ the trellis-based maximum a posteriori (MAP) algorithm as a bridge between LDPC and Turbo codes decoding. We view the LDPC code as a concatenation of n super-codes where each super-code has a simpler trellis structure so that the MAP algorithm can be easily applied to it. We propose a flexible functional unit (FFU) for MAP processing of LDPC and Turbo codes with a low hardware overhead (about 15% area and timing overhead). Based on the FFU, we propose an area-efficient flexible SISO decoder architecture to support LDPC/Turbo codes decoding. Multiple such SISO modules can be embedded into a parallel decoder for higher decoding throughput. As a case study, a flexible LDPC/Turbo decoder has been synthesized on a TSMC 90 nm CMOS technology with a core area of 3.2 mm2. The decoder can support IEEE 802.16e LDPC codes, IEEE 802.11n LDPC codes, and 3GPP LTE Turbo codes. Running at 500 MHz clock frequency, the decoder can sustain up to 600 Mbps LDPC decoding or 450 Mbps Turbo decoding.  相似文献   

7.
This paper presents a memory efficient architecture of layered decoder for the dual-rate LDPC codes in the China Multimedia Mobile Broadcasting (CMMB) system. An efficient scheme for reducing the memory block number is proposed to increase the memory usage efficiency, so that the quantity of memory bits, decoder area and power consumption is significantly reduced. At the same time, the memory structure keeps the “one cycle one layer access” timing schedule to achieve high decoding throughput. Furthermore, the early termination strategy is employed to further increase the throughput; a non-uniform quantization scheme and an area efficient calculation module are developed to further improve the memory efficiency and hardware resource efficiency, respectively. By using SMIC 130 nm 1P7M CMOS process, the decoder is implemented and the core area is 5.29 mm2. The total memory bits consumption is only 130.5 K which consumes 2.53 mm2 memory area.  相似文献   

8.
A low-complexity design architecture for implementing the Successive Cancellation (SC) decoding algorithm for polar codes is presented. Hardware design of polar decoders is accomplished using SC decoding due to the reduced intricacy of the algorithm. Merged processing element (MPE) block is the primary area occupying factor of the SC decoder as it incorporates numerous sign and magnitude conversions. Two’s complement method is typically used in the MPE block of SC decoder. In this paper, a low-complex MPE architecture with minimal two’s complement conversion is proposed. A reformulation is also applied to the merged processing elements at the final stage of SC decoder to generate two output bits at a time. The proposed merged processing element thereby reduces the hardware complexity of the SC decoder and also reduces latency by an average of 64%. An SC decoder with code length 1024 and code rate 1/2 was designed and synthesized using 45-nm CMOS technology. The implementation results of the proposed decoder display significant improvement in the Technology Scaled Normalized Throughput (TSNT) value and an average 48% reduction in hardware complexity compared to the prevalent SC decoder architectures. Compared to the conventional SC decoder, the presented method displayed a 23% reduction in area.  相似文献   

9.
针对RS码与LDPC码的串行级联结构,提出了一种基于自适应置信传播(ABP)的联合迭代译码方法.译码时,LDPC码置信传播译码器输出的软信息作为RS码ABP译码器的输入;经过一定迭代译码后,RS码译码器输出的软信息又作为LDPC译码器的输入.软输入软输出的RS译码器与LDPC译码器之间经过多次信息传递,译码性能有很大提高.码长中等的LDPC码采用这种级联方案,可以有效克服短环的影响,消除错误平层.仿真结果显示:AWGN信道下这种基于ABP的RS码与LDPC码的联合迭代译码方案可以获得约0.8 dB的增益.  相似文献   

10.
A high-throughput memory-efficient decoder architecture for low-density parity-check (LDPC) codes is proposed based on a novel turbo decoding algorithm. The architecture benefits from various optimizations performed at three levels of abstraction in system design-namely LDPC code design, decoding algorithm, and decoder architecture. First, the interconnect complexity problem of current decoder implementations is mitigated by designing architecture-aware LDPC codes having embedded structural regularity features that result in a regular and scalable message-transport network with reduced control overhead. Second, the memory overhead problem in current day decoders is reduced by more than 75% by employing a new turbo decoding algorithm for LDPC codes that removes the multiple checkto-bit message update bottleneck of the current algorithm. A new merged-schedule merge-passing algorithm is also proposed that reduces the memory overhead of the current algorithm for low to moderate-throughput decoders. Moreover, a parallel soft-input-soft-output (SISO) message update mechanism is proposed that implements the recursions of the Balh-Cocke-Jelinek-Raviv (BCJR) algorithm in terms of simple "max-quartet" operations that do not require lookup-tables and incur negligible loss in performance compared to the ideal case. Finally, an efficient programmable architecture coupled with a scalable and dynamic transport network for storing and routing messages is proposed, and a full-decoder architecture is presented. Simulations demonstrate that the proposed architecture attains a throughput of 1.92 Gb/s for a frame length of 2304 bits, and achieves savings of 89.13% and 69.83% in power consumption and silicon area over state-of-the-art, with a reduction of 60.5% in interconnect length.  相似文献   

11.
基于FPGA的LDPC码编译码器联合设计   总被引:1,自引:0,他引:1  
该文通过对低密度校验(LDPC)码的编译码过程进行分析,提出了一种基于FPGA的LDPC码编译码器联合设计方法,该方法使编码器和译码器共用同一校验计算电路和复用相同的RAM存储块,有效减少了硬件资源的消耗量。该方法适合于采用校验矩阵进行编码和译码的情况,不仅适用于全并行的编译码器结构,同时也适用于目前广泛采用的部分并行结构,且能够使用和积、最小和等多种译码算法。采用该方法对两组不同的LDPC码进行部分并行结构的编译码器联合设计,在Xilinx XC4VLX80 FPGA上的实现结果表明,设计得到的编码器和译码器可并行工作,且仅占用略多于单个译码器的硬件资源,提出的设计方法能够在不降低吞吐量的同时有效减少系统对硬件资源的需求。  相似文献   

12.
Wireless protocols strive to increase spectral efficiency and achieve high data throughput. Low-density parity-check (LDPC) codes are advanced forward error correction (FEC) codes that use iterative decoding techniques to achieve close to the Shannon capacity. Due to their superior performance, state-of-art wireless protocols, such as WiMAX and LTE Advanced, are adopting LDPC codes. LDPC codes come with the high cost of drastically increased computational effort for decoding. Among the proposed decoding algorithms, the belief propagation (BP) algorithm leads to a good approximation of an optimal decoder; however, it uses compute-intensive hyperbolic trigonometric functions. To reduce the computational complexity, typical LDPC decoder implementations use simplified algorithms, such as the min-sum algorithm, at the expense of reduced signal processing performance. Efficient and accurate methods to compute hyperbolic trigonometric functions can facilitate the use of the BP algorithm in real-time LDPC decoder implementations. This paper investigates hyperbolic COordinate Rotation DIgital Computer (CORDIC) instruction set architecture (ISA) extensions for software-defined radio (SDR) processors to compute the hyperbolic trigonometric functions for LDPC decoding efficiently. The CORDIC ISA extensions are evaluated on the low-power multi-threaded Sandbridge Sandblaster? SB3000 platform. The computational performance, numerical accuracy, hardware estimates, power consumption estimates, and memory requirements with the CORDIC ISA extensions are compared to a baseline implementation without these extensions on the SB3000.  相似文献   

13.
Low-density parity-check (LDPC) codes perform very close to capacity for long lengths on several channels. However, the amount of memory (fixed-point numbers that need to be stored) required for implementing the message-passing algorithm increases linearly as the number of edges in the graph increases. In this letter, we propose a decoding algorithm for decoding LDPC codes that reduces the memory requirement at the decoder. The proposed decoding algorithm can be analyzed using density evolution; further, we show how to design good LDPC codes using this. Results show that this algorithm provides almost the same performance as the conventional sum-product decoding of LDPC codes.  相似文献   

14.
《Microelectronics Journal》2014,45(11):1489-1498
In this paper, an area efficient and high throughput multi-rate quasi-cyclic low-density parity-check (QC-LDPC) decoder for IEEE 802.11n applications is proposed. An overlapped message passing scheme and the non-uniform quantization scheme are incorporated to reduce the overall area and power of the proposed QC-LDPC decoder. In order to enhance the decoding throughput and reduce the size of memories storing soft messages, an improved early termination (ET) scheme and base matrix reordering technique is employed. These techniques significantly reduce the total number of decoding iterations and memory accessing conflicts without mitigating the decoding performance. Equipped with these techniques an area efficient and high throughput multi-rate QC-LDPC decoder is designed, simulated and implemented with Xilinx Virtex6 (XC6VLX760-2FF1760) for an irregular LDPC code of length 1944 and code rates (1/2–5/6) specified in IEEE 802.11n standard. With a maximum clock frequency of 574.136–587.458 MHz the proposed QC-LDPC decoder can achieve throughput in the range of 1.27–2.17 Gb/s for 10 decoding iterations. Furthermore, by using Cadence RTL compiler with UMC 130 nm VLSI technology, the core area of the proposed QC-LDPC decoder is found to be 1.42 mm2 with a power dissipation in the range of 101.25–140.42 mW at 1.2 V supply voltage.  相似文献   

15.
Efficient hardware implementation of low-density parity-check (LDPC) codes is of great interest since LDPC codes are being considered for a wide range of applications. Recently, overlapped message passing (OMP) decoding has been proposed to improve the throughput and hardware utilization efficiency (HUE) of decoder architectures for LDPC codes. In this paper, we first study the scheduling for the OMP decoding of LDPC codes, and show that maximizing the throughput gain amounts to minimizing the intra- and inter-iteration waiting times. We then focus on the OMP decoding of quasi-cyclic (QC) LDPC codes. We propose a partly parallel OMP decoder architecture and implement it using FPGA. For any QC LDPC code, our OMP decoder achieves the maximum throughput gain and HUE due to overlapping, hence has higher throughput and HUE than previously proposed OMP decoders while maintaining the same hardware requirements. We also show that the maximum throughput gain and HUE achieved by our OMP decoder are ultimately determined by the given code. Thus, we propose a coset-based construction method, which results in QC LDPC codes that allow our optimal OMP decoder to achieve higher throughput and HUE.  相似文献   

16.
以CCSDS(太空数据系统咨询委员会)标准中1/2码率的LDPC码为例,分析了低密度奇偶校验码(LDPC)译码算法的特点,提出了在译码器的FPGA实现中采用乒乓操作的设计方法,优化译码器信道似然比信息存储模块结构,交替接收两帧数据,使译码器不间断地工作,提高了硬件资源利用率,使译码器的吞吐量增加一倍.  相似文献   

17.
Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.  相似文献   

18.
低密度校验码BP译码算法中量化问题的研究   总被引:1,自引:0,他引:1  
孙韶辉  孙蓉  王新梅 《电子学报》2003,31(2):217-220
本文对低密度校验(LDPC)码BP译码算法的量化问题(主要是接收比特信号和中间变量)进行了研究.着重讨论了量化范围、量化级数、均匀和非均匀量化等因素对译码性能的影响,给出了LDPC码BP译码算法的一些实用性的结论.并进一步发现在对BP译码算法的中间变量进行高阶量化处理时,在高信噪比的情况下,能明显地减小译码的误码率,降低译码算法的错误平层,提高译码性能.  相似文献   

19.
This brief studies very large-scale integration (VLSI) decoder architectures for RS-based low-density parity-check (LDPC) codes, which are a special class of LDPC codes based on Reed-Solomon codes. The considered code ensemble is well known for its excellent error-correcting performance and has been selected as the forward error correction coding scheme for 10GBase-T systems. By exploiting the shift-structured properties hidden in the algebraically generated parity-check matrices, novel decoder architectures are developed with significant advantages of high level of parallel decoding, efficient usage of memory, and low complexity of interconnection. To demonstrate the effectiveness of the proposed techniques, we completed a high-speed decoder design for a (2048, 1723) regular RS-LDPC code, which achieves 10-Gb/s throughput with only 820 000 gates. Furthermore, to support all possible RS-LDPC codes, two special cases in code construction are considered, and the corresponding extensions of the decoder architecture are investigated.  相似文献   

20.
This paper presents a novel multi-Gb/s multi-mode LDPC decoder architecture and efficient design techniques for gigabit wireless communications. An efficient dynamic and fixed column-shifting scheme is presented for multi-mode architectures. A novel low-complexity local switch is proposed to implement the dynamic and fixed column-shifting scheme. Furthermore, an efficient quantization method and the usage of a one׳s-complement scheme instead of a two׳s-complement scheme are explored. The proposed decoder achieves very high throughput with minimal area overhead. Post layout results using TSMC 65-nm CMOS technology shows much better throughput, as well as better area- and energy-efficiency, compared to other multi-mode LDPC decoders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号