首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO nanoparticle–based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC) by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values) were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL) process on cotton fabrics properties.  相似文献   

2.
In this study, silver nanoparticles were synthesized on cotton fabric modified with 3‐aminopropyltrimethoxysilane (APTMS) using sodium citrate as a reducing/stabilizing agent by microwave‐assisted process. The presence of a highly oriented amino‐terminated self‐assembled monolayer and formation of APTMS was demonstrated by an X‐ray photoelectron spectroscopy (XPS) analysis. The silver‐coated cotton fabrics were examined by scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX). UV protection, antistatic, and hydrophobic properties were also evaluated. The results show that silver‐coated fabric modified with APTMS possesses excellent antistatic, UV protection with ultraviolet protection factor (UPF) of 396.5 and superhydrophobic properties with contact angle of 153.2°. APTMS pretreatment improves the adhesive strength between silver coatings and cotton fabric. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3862–3868, 2013  相似文献   

3.
In this study the possibility of tailoring the textile nanocomposite materials based on the polyester fabric and TiO2 nanoparticles that can simultaneously provide desirable level of antibacterial activity, UV protection, and self‐cleaning effects with long‐term durability was investigated. To enhance the binding efficiency of colloidal TiO2 nanoparticles, the surface of polyester fabrics was activated by low‐pressure RF air plasma, and corona discharge at atmospheric pressure. Obtained functionalized textile materials provided maximum antibacterial efficiency against gram‐negative bacterium E. coli. High values of UV protection factor (UPF) indicate the maximum UV blocking efficiency (50+) of these fabrics. The results of self‐cleaning test with blueberry juice stains and photodegradation of methylene blue in aqueous solution confirmed excellent photocatalytic activity of TiO2 nanoparticles deposited on the fiber surface. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

4.
We prepared titanium dioxide/PVA nanocomposite fiber webs for application in multifunctional textiles by electrospinning. The morphological properties of the TiO2/PVA nanocomposite fibers were characterized using scanning electron microscopy and transmission electron microscopy. Layered fabric systems with electrospun TiO2 nanocomposite fiber webs were developed using various concentrations of TiO2 and a range of web area densities, and then the UV‐protective properties, antibacterial functions, formaldehyde decomposition ability, and ammonia deodorization efficiency of the fabric systems were assessed. Layered fabric systems with TiO2 nanocomposite fiber webs containing 2 wt% TiO2 nanoparticles at 3.0 g m?2 web area density exhibited an ultraviolet protection factor of greater than 50, indicating excellent UV protection. The same system showed a 99.3% reduction in Staphylococcus aureus. Layered fabric systems with TiO2 nanocomposite fiber webs containing 3 wt % TiO2 nanoparticles at 3.0 g m?2 web area density exhibited a 85.3% reduction in Klebsiella pneumoniae. Titanium dioxide nanocomposite fiber webs containing 3 wt % TiO2 nanoparticles at 3.0 g m?2 web area density exhibited a formaldehyde decomposition efficiency of 40% after 2 h, 60% after 4 h, and 80% after 15 h under UV irradiation. The same system showed an ammonia deodorization efficiency of 32.2% under UV irradiation for 2 h. These results demonstrate that TiO2 nanocomposite fibers can be used to produce advanced textile materials with multifunctional properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
This study explores new technique to produce a nylon fabric with durable self-cleaning property. Nylon fabric (polyamide 66) has been coated with electrospun nylon nanofibers containing nanoparticles (TiO2, SrTiO3 and ZnO). The coated samples were heat-setted in order to fixation of the nanofibers on surface of the nylon fabric. The self-cleaning property is tested by discoloration of the stained fabric with Direct Green 6 under UV irradiation. The scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns were employed to characterize the treated nylon fabrics. The treated fabrics showed excellent photoactivity toward dye degradation. Moreover, the photoactivity of the treated fabrics stable after repeat laundering.  相似文献   

6.
Poly(ethylene phthalate) (PET)/nano‐TiO2 composites prepared via in situ polymerization were spun into fiber by the melt‐spinning process. The dispersion of nanosized rutile TiO2 in the PET was studied using transmission electron microscopy (TEM) and scanning probe microscopy (SPM) techniques. The mechanical properties and the properties of ultraviolet (UV) protection were investigated. The results showed that rutile TiO2 can be dispersed uniformly by the in situ polycondensation process. The mechanical properties of PET/TiO2 fiber were slightly affected by adding nano‐TiO2. The UV‐ray transmittance of PET/nano‐TiO2 fabrics was below 10% in the UV‐A band and below 1% in the UV‐B band. And the ultraviolet protection factor (UPF) of PET/nano‐TiO2 fabrics was greater than 50. All these PET/TiO2 nanocomposite fabrics exhibited excellent UV‐blocking properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1588–1593, 2006  相似文献   

7.
In this study, the polyester (PET) fabric was hydrolyzed with alkali to increase the surface activity and enhance the nano titanium dioxide (nano-TiO2) adsorption to produce higher functionality. The PET fabric was first treated with sodium hydroxide along with cetyl trimethyl ammonium bromide as a cationic surfactant and then dipped into an ultrasound bath containing nano-TiO2 followed by curing at high temperature. The weight loss, vertical wicking, and water droplet adsorption time were evaluated and are reported. The photocatalytic activity of TiO2 nanoparticles deposited on the PET fabric was examined by the degradation of methylene blue as a model stain under daylight irradiation. The residual TiO2 on the fabric surface after 1 and 10 successive washings was determined to indicate the washing durability of the finished fabric. Also, the UV protection was assessed by UV reflectance spectroscopy. The scanning electron microscopy pictures and energy-dispersive X-ray spectra of some fabrics are also reported. The surface hydrolysis of the PET fabric with sodium hydroxide created some voids and hydrophilic groups on the fabric surface; this led to the higher adsorption of nano-TiO2 particles and enhanced the wettability, vertical wicking, and higher durability against repeated washings of the nano-TiO2 treated fabric. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Titanium dioxide (TiO2) has good ultraviolet (UV)‐blocking power and is very attractive in practical applications because of such advantages as nontoxicity, chemical stability at high temperature, and permanent stability under UV exposure, for example. Development of nanoscience and ‐technology provides new ways for better treatment for UV‐resistant films and fabrics using TiO2. However, the exact mechanisms of TiO2 as a UV‐blocking additive are still not very clear, and researchers hold different views on this issue. The aim of this investigation was to study systematically the mechanisms of TiO2 as a UV‐blocking additive for films and fabrics. To achieve this goal, the conventional scheme describing light interactions with fabrics was revised based on more recent progress in optical theory, and special experiments and analytic methods were used in the investigation. Several effects attributed to the nanoscale additives were identified. Moreover, detailed analyses based on the results yielded a few important suggestions useful in developing or improving both inorganic UV‐blocking agents and the UV‐protective films and textiles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3201–3210, 2004  相似文献   

9.
We demonstrate that spectral selective photocatalytic multilayer films can be tailored such that they can harness the full solar spectrum for enhanced photocatalytic gas-phase oxidation of acetaldehyde. Thin films of anatase TiO2 were deposited on a thin solar absorber TiAlN film to fabricate bilayer TiO2/TiAlN films by dc magnetron sputtering on aluminium substrates. The structural and optical properties of the films were characterized by X-ray diffraction and Raman spectroscopy. The reaction rate and quantum yield for acetaldehyde removal was measured and an almost tenfold enhancement of the quantum yield was observed for the TiO2/TiAlN films compared with the single TiO2 film, on par with enhancements achieved with new heterojunction photocatalysts. The results were interpreted by a temperature-induced change of the reaction kinetics. Absorption of simulated solar light illumination resulted in a temperature increase of the TIAlN film that was estimated to be at most 126 K. We show that a concomitant temperature increase of the top layer TiO2 by 100 K shifts the water gas-surface equilibrium from multilayer to submonolayer coverage. We propose that this is the main reason for the observed enhancement of the photocatalytic activity, whereby gas phase molecules may come in direct contact with free surface sites instead of having to diffuse through a thin water film. The implications of the results for judicious control of temperature and relative humidity for efficient gas-phase photocatalysis and exploitation of selective solar absorbing films are discussed.  相似文献   

10.
Textiles, with appropriate light absorbers and suitable finishing methods, can be used as ultraviolet (UV) protection materials. In this study, we investigated the effects of nano‐TiO2 particles on the UV‐protective and structural properties of polypropylene (PP) textile filaments. Master batches of PP/TiO2 nanoparticles were prepared by melt compounding before spinning, and filaments incorporating 0.3, 1, and 3% TiO2 nanoparticles were spun in a pilot melt‐spinning machine. The structural properties of the nanocomposite fibers were analyzed with scanning electron microscopy, X‐ray diffractometry, differential scanning calorimetry, and tensile tests. The UV‐protection factor was determined to evaluate the UV‐protective properties of the filaments. In conclusion, although the structure and mechanical properties of the nanocomposite filaments were slightly affected by the addition of nano‐TiO2, the UV‐protective properties of the PP filaments improved after treatment with nano‐TiO2, and the nanocomposite filaments exhibited excellent UV protection. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
A new approach to the dyeing of cotton fabrics using an electrostatic self‐assembly method was evaluated. Cotton fabrics were pretreated with 2,3‐epoxypropyltrimethylammonuium chloride and cationic charges were produced on the fabric surfaces. For the dyeing of cotton fabric, reactive and acid dyes were used. Oppositely charged anionic reactive/acid dyes and cationic poly(diallyldimethylammonium chloride) were alternately deposited on the surface of cationised cotton fabrics. Ten multilayer films of dye/poly(diallyldimethylammonium chloride) were deposited on the cotton fabric surfaces using a padder. The build‐up of the multilayer films and the level of colour strength (K/S) achieved are discussed. Samples of cotton fabrics were also dyed with the same dyes, but using the exhaust method, and both types of dyed samples were compared. The washing, rubbing and light fastness properties were evaluated for the dyed fabrics.  相似文献   

12.
Rutile titanium dioxide (TiO2), at different amounts (0, 1, 3, 5, 8 and 10 phr), was used to prepare PVC/TiO2 composites as cool materials. Exposure to the ultraviolet (UV)-irradiation at 65 °C (black-panel thermometers) with a xenon arc as the light source (0.51 W/(m2 nm), 340 nm) for 200, 400 and 600 h resulted in the formation of polyene structure in PVC and causing discoloration. Besides, atomic force microscopy and roughness measurements were used to examine the changes in surface topography and roughness before and after UV-irradiation. Ethylenic index was used to characterize the aging degree of composites. The contact angle value of composites became smaller and their polarity increased after exposing to UV-irradiation, but the presence of TiO2 effectively prevented this process. In addition, exposure to UV-irradiation had little effect on the reflectance of PVC/TiO2 composites over the whole solar wavelength range (200–2500 nm), especially in near infrared (NIR) region (700–2500 nm). This allowed the TiO2-loaded samples to display an excellent cooling property whether indoors or outdoors. The addition of higher quantities of TiO2 led to higher efficiency of the cooling effect. In general, this study provides strong support for the property of long-term outdoor use of PVC/TiO2 composites with high solar reflectance and excellent cooling performance.  相似文献   

13.
Biocomposites containing ultraviolet (UV) radiation absorbing inorganic nanofillers are of great interest in food packaging applications. The biodegradable polylactide (PLA) composite films were prepared by solvent casting method by incorporating 1 wt % of titanium dioxide (TiO2) and Ag‐TiO2 (silver nanoparticles decorated TiO2) nanoparticles to impart the photodegradable properties. The films were exposed to UV radiation for different time periods and morphology of the composite films before and after UV exposure were investigated. The results showed that homogenous filler distribution was achieved in the case of Ag‐TiO2 nanoparticles. The thermal properties and thermomechanical stability of the composite film containing Ag‐TiO2 nanoparticles were found to be much higher than those of neat PLA and PLA/TiO2 composite films. The scanning electron microscopy and X‐ray diffraction studies revealed that the photodegradability of PLA matrix was significantly improved in the presence of Ag‐TiO2 nanoparticles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Self-cleaning of wool fabric has been of increasing interest due to availability and practicability. In this paper, two kinds of wool fabrics, including raw wool and Kroy-process wool fabric, were successfully modified by TiO2/SiO2 gel stabilized by 1,2,3,4-butanetetracarboxylic acid (BTCA) and citric acid (CA), respectively. The optimum concentration of carboxylic acids and TiO2/SiO2 gel was decided by the crease recovery angles and total color difference (ΔE) values, respectively. The results revealed that wool fabrics treated with BTCA and TiO2/SiO2 had better wrinkle resistance in comparison with CA and TiO2/SiO2 treated samples. The decomposition of stains was studied using UV irradiation and the presence of TiO2/SiO2 gel demonstrated obvious self-cleaning property, in which the color of wool fabric was unchangeable. The hydrophilicity of Kroy-process wool fabric increased relative to raw ones. In addition, Scanning Electron Microscope images demonstrated the layer of TiO2/SiO2 nanoparticles coated on treated samples. In general, the adhesion properties coated to the fabric surface showed a slight loss even at harsh processing conditions, however, the anti-UV properties obviously increased due to the decrease in the fabric porosity. And the linkages between carboxylic acid and wool fibers were illustrated using FTIR pattern.  相似文献   

15.
In this study, lightweight 100% cotton fabric was successfully modified by the sol–gel process to impart high ultraviolet radiation (UVR) scattering property to the fabric surface. Active ingredients were tetraethyl orthotitanate [Ti(OCH2CH3)4] and tetraethyl orthosilicate [Si(OCH2CH3)4]. The cotton fabric was padded with the nanosol solution, dried at 60°C, and cured at 150°C. Scanning electron microscopy showed continuous and uniform film on the fiber surface. Excellent UVR scattering was obtained with all treated fabrics. Increasing titania content in the nanosol solution leads to increased UVR protection. This is attributed to the increase of the refractive index of the film formed on the fabric surface. Excellent durability of the treatment was obtained, which indicates a good adhesion between the coating and the fabric surface. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 111–117, 2007.  相似文献   

16.
In this study, titanium dioxide (TiO2) was used as coating compound to add self-cleaning and antibacterial functionality properties to the cotton fabric. TiO2-consisting coating compounds were prepared at four different processing temperatures (20, 40, 60, and 80°C) in order to examine the influence of process temperature on average particle size. Among the prepared solutions, the one prepared at 80°C process temperature was selected for the dip coating application of the 100% cotton fabric, which formed a transparent nanosized TiO2 film on the fibrous structure of fabric. Dip coating trials were done at five coating temperatures of 20, 40, 60, 80, and 100°C. TiO2-coated and uncoated fabric samples were then tested to evaluate their self-cleaning and antibacterial activities. A self-cleaning activity test was conducted using uncoated and TiO2-coated fabric samples which were stained with hot tea solution via dipping method. Stained fabric samples were illuminated under a solar simulator for the color changes to measure photocatalytic degradation of stain colors. Antibacterial performance of TiO2-coated and uncoated fabric samples was determined against pure cultures of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213.  相似文献   

17.
Protection against bacterial contamination remains a demand for healthcare textiles such as wound dressings to reduce or eliminate hospital-acquired infections related to antibiotic-resistant bacteria. We report herein a simple and straightforward in situ approach to deposit copper oxide and titanium oxide nanoparticles onto cotton fabric using a sonochemical-mediated sol–gel method. Modification of the cotton surface was achieved by incorporation of citric acid (CA) and polyethylene glycol (PEG) to improve the attachment of the nanoparticles and reduce the attachment of bacteria to the cotton surface, respectively. The resultant cotton fabric was used against Escherichia coli as a Gram-negative bacterium and Staphylococcus aureus as a Gram-positive bacterium in dark condition as an in vitro model for treatment of bacterial wound infection. The effects of different treatment parameters including duration and frequency of ultrasonic irradiation, surface modification with PEG and/or CA, and cotton chemical composition with different metal oxide molar ratios on the antibacterial activity of the treated cotton fabric were studied. All treated cotton fabrics showed antibacterial activity, with higher efficiency for those coated with CuO or CuO/TiO2 (1:1 molar ratio) among the single metal oxide and composite-modified cotton fibers, respectively. Our results show that such functionalized cotton fibers could actively fight the spread of bacterial infections by preventing bacterial adhesion, enabling more efficient bonding, and ultrasonically promoting generation of nanoparticles and their strong adhesion to the fabric surface.  相似文献   

18.
The titanium hydrosol was prepared and treated on the cotton fabrics to improve its antibacterial and UV‐resistant properties. The sol size and gel morphology on the fabric were characterized by Nanosizer, SEM, and AFM. The antibacterial reduction rate of the treated fabrics against Staphylococcus aureus and Escherichia coli reached above 95%, and the corresponding UV transmittance value of the treated fabrics decreased considerably, with a ultraviolet protection factor of 50 or excellent grade, and the protection was tested according to the Australian/New Zealand standards. In spite of 50 washing cycles, the antibacterial and UV‐resistant properties changed almost little because of the strong affinity between the gel particles and cellulose material. The strength tests of the treated fabrics also showed no negative effects from the treatment on the fabrics. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1478–1482, 2006  相似文献   

19.
In this study, 100% cotton knitted fabrics made from combed cotton and combed pima cotton were dyed with reactive dye, with different dye concentrations. Colour properties such as CIE L*a*b* values as well as dyeing uniformity of the dyed fabrics were measured. The relationships between colour properties and the ultraviolet protection afforded by cotton knitted fabrics were investigated. Experimental results revealed that dye concentration is the most important factor. In addition, only L* values have a direct mathematical relationship with the ultraviolet protection factor; a* and b* values and dyeing uniformity were not found to have a significant correlation with ultraviolet protection factor values. Meanwhile, knitted fabric made from combed cotton fibre has better ultraviolet protection performance than fabric made from combed pima cotton fibre.  相似文献   

20.
秦圆 《精细化工》2021,38(7):1386-1392,1458
以植物金银花提取物作为还原剂制备了纳米ZnO和纳米Ag,通过浸轧法将纳米ZnO单独整理以及将两者依次整理到棉织物上制备多功能棉织物(ZnO-棉织物、ZnO/Ag-棉织物).利用SEM、XRD、FTIR分析了整理前后棉织物的形貌和结构,并探讨了整理后棉织物的多功能性.结果表明,棉织物上的纳米粒子分布较均匀且发生了轻微团聚.与ZnO-棉织物相比,ZnO/Ag-棉织物对亚甲基蓝(MB)和红酒的降解率分别提高了7.09%和10.61%,说明纳米Ag提升了纳米ZnO的光催化活性.ZnO-棉织物经过10次洗涤后其纳米粒子含量虽有小幅下降,但对MB的降解率仍达到83.24%以上,说明负载纳米粒子后棉织物具有良好的自清洁能力和耐洗性能.此外,ZnO-棉织物和ZnO/Ag-棉织物的紫外防护系数(UPF)值分别达到33.23和41.06,对大肠杆菌和金黄色葡萄球菌的抑菌率均达到95%以上,表现出优良的抗紫外线性和抗菌性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号