首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, nanosilica of very high specific surface area is used as reinforcing filler for preparing an epoxy-based nanocomposite coating. For appropriate dispersion of nanoparticles in the polymer matrix, ultrasound waves were applied after mechanical mixing. The resulting perfect dispersion of nanosilica particles in epoxy coating revealed by transmission electron microscopy ensured the transparency of the nanocomposite. Nanoindentation was used to determine some mechanical properties such as hardness and elastic modulus. The obtained results show 26 and 21% increases in hardness and elastic modulus, respectively for resin filled with 5% nanosilica compared to neat epoxy. DMA results show that the glass transition temperature of samples is increased with increasing silica nanoparticles. The result of TGA shows significant improvement of the thermal decomposition temperature of epoxy coating containing 5% nanosilica compared to neat epoxy. Scanning electron microscopy (SEM) micrographs of fractured surfaces show increased roughness with nanosilica addition.  相似文献   

2.
Different loading of Portland cement (PC) (10, 20, 30, and 40 wt%) was used to produce epoxy-based polymer concrete. The optimum loading was used to prepare another sample using hydration in presence of air circulation. The polymer concretes were characterized in terms of mechanical, thermal, structural and morphological properties. The properties showed increasing trends after cement addition. Results showed that the tensile strength of the polymer concretes were improved by 37.2%, 115.5%, 165.9%, and 40.6% for loading of 10, 20, 30, and 40 wt% cement, respectively. In addition, the flexural strength of the polymer concretes was also enhanced and found maximum (175.3% higher) in 30 wt% concrete compared to neat epoxy. Other mechanical properties of the polymer concrete were also found increasing. Moreover, decomposition temperature was raised nearly 15°C for adding 30 wt% cement which was the maximum among the other polymer concretes. For the case of hydration in presence of air circulation, the prepared composite showed the highest tensile mechanical performance with improved surface topography. From the results, it was concluded that the addition of cement into the epoxy was very effective to produce polymer concretes.  相似文献   

3.
The influence of the glass transition temperature and the mechanical and anticorrosion properties of factors such as the amount of plasticizer added to an epoxy primer were investigated by DSC (differential scanning calorimeter), DMA (dynamic mechanical analysis), stress-strain tests, salt fog spray tests, accelerated tests, and electrochemical tests. The addition of plasticizer results in a decrease in the glass transition temperature and a change in the mechanical properties. Different tests were carried out to the optimum percentage of plasticizer content (1.5–3% weight ratio to epoxy resin) required to obtain the maximum anticorrosion performance of the epoxy primer. These changes are explained by the structural-kinetic effect exerted by the plasticizer on the chemical crosslinking in the course of the epoxy network synthesis and the increase in the excess free volume.  相似文献   

4.
In this work, the epoxy systems modified with polysulfone (PSF) and cellulose nanofiber (CNF) cured at different temperatures are prepared to investigate the effect of CNF on curing reaction, morphology evolution, rheology, thermal, and mechanical performance of composites. The reaction rate is increased and the activation energy is decreased with CNF incorporation, implying an accelerating effect of CNF on the epoxy-amine reaction. The phase separation and gelation of the epoxy/PSF/CNF system start earlier compared with the binary system of epoxy/PSF. While it is displayed by rheology that both the system viscosity and relaxation time are elevated with CNF, presenting an inhibiting effect on phase evolution. Morphologies with smaller domain size are finally freezed by the epoxy gelation. The enhancement of impact performance for the epoxy/PSF/CNF composites is indicated by 40.2% increase in the impact strength, which is attributed to the finer phase-separated morphology, the uniformly distributed CNF within the polymer matrix and the good load transfer between phases. In addition, the thermal stability of composites is improved as the CNFs existed in the phase-separated polymer matrix can restrict the thermal motion of molecules during decomposition process. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48628.  相似文献   

5.
Due to environmental awareness and depletion of petroleum oil, bioplastics and their composites are one of the most researchable topics throughout the world. Polymers that are produced from renewable sources are expected to be the best alternative to replace conventional polymers. The bottles neck of these bioplastics is its cost which limits its application in certain purposes. Bioplastics filled or reinforced with natural fibers can reduce cost and improve properties, like stiffness, strength and toughness of biocomposites. Impact strength and fracture toughness are the main demerits of short fiber-filled biocomposite. On the other hand, when nanoclay, having a very high aspect ratio, is mixed with bioplastics it may significantly affect the thermal and mechanical properties of the final composites. A composite may also suffer dispersion inefficiency, which is considered the key factor to improve the properties. The aim of this paper was to hybridize nanoclay and short kenaf fiber in polylactic acid (PLA) by double extrusion method and followed by mechanical, thermal and morphological characterizations. Mechanical properties showed improvement with nanoclay, specifically the impact strength increased more than 50 % compared with unreinforced PLA. A double extruded composite showed 3–10 % better tensile and flexural properties than the single extruded composite. Similarly, addition of nanoclay increased decomposition and melting temperatures (T m) from 198 to 225 °C and 152 to 155 °C, respectively. Crystallization temperature (T c), however, dropped with nanoclay from 116 to 106 °C and storage modulus (E’) increased by about 1 GPa. These findings were also supported by scanning electron micrograph (SEM) and transmission electron micrograph (TEM) where in double extruded composite a better dispersion of nanoclay was observed. By employing X-ray diffraction (XRD) it was found that higher percentage of crystallinity was obtained while Fourier transform infrared (FTIR) displayed new bond formation. The presence of nanoclay enhanced thermal and mechanical properties of the hybrid composite.  相似文献   

6.
7.
A series of highly thermostable epoxy foams with diglycidyl ether of bisphenol‐A and bisphenol‐S epoxy resin (DGEBA/DGEBS), 4,4′‐diaminodiphenyl sulfone (DDS) as curing agent have been successfully prepared through a two‐step process. Dynamic and steady shear rheological measurements of the DGEBA/DGEBS/DDS reacting mixture are performed. The results indicate all samples present an extremely rapid increase in viscosities after a critical time. The gel time measured by the crossover of tan δ is independent of frequency. The influence of SiO2 content on morphology, thermal, and mechanical properties of epoxy foams has also been investigated. Due to the heterogeneous nucleation of SiO2, the pore morphology with a bimodal size distribution is observed when the content of SiO2 is above 5 wt %. Dynamic mechanical analysis (DMA) reveals that pure epoxy foam possesses a high glass transition temperature (206°C). The maximum of specific compressive strength can be up to 0.0253 MPa m3 kg?1 at around 1.0 wt % SiO2. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40068.  相似文献   

8.
In this study, nanocomposites based on Nylon 6 and nanocrystalline cellulose (NCC) were prepared by melt compounding. Then, morphological, thermal, and mechanical properties were analyzed for NCC content between 0 and 7 wt%. Morphological analyses showed different roughness in fractured surface of neat Nylon and its nanocomposites caused by the presence of NCC. Mechanical results showed that the optimum properties were obtained at 3% NCC which could be related to relatively good NCC dispersion at low concentrations with good Nylon‐NCC bonding. Overall, flexural (41%) and tensile (23%) moduli, as well as tensile strength (11%) were increased up to 3% of NCC. However, elongation at break and impact strength decreased with NCC addition. Finally, density and hardness showed only a small increase of 5 and 3%, respectively. POLYM. COMPOS., 37:1473–1479, 2016. © 2014 Society of Plastics Engineers  相似文献   

9.
Cellulose nanocrystals (CNCs) are reinforcing fillers of emerging interest for polymers due to their high modulus and potential for sustainable production. In this study, CNC-based composites with a waterborne epoxy resin matrix were prepared and characterized to determine morphology, water content, and thermal and mechanical properties. While some CNC aggregation was observed, the glass transition temperature (Tg) and modulus for the composites increased with increasing CNC content. Relative to neat epoxy, at 15 wt.% CNC the storage modulus increased by 100%, the Tg increased from 66.5 °C to 75.5 °C, and tensile strength increased from 40 MPa to 60 MPa, suggesting good adhesion between epoxy and CNC surfaces exposed to the matrix. Additionally, no additional water content resulting from CNC addition were observed. These results provide evidence that CNCs can improve thermomechanical performance of waterborne epoxy polymers and that they are promising as reinforcing fillers in structural materials and coatings.  相似文献   

10.
Isotactic polypropylene (iPP): ethylene propylene diene monomer (EPDM) blend is one of the most suited compatible and miscible blends. The blends of iPP and EPDM (80:20) filled with BaCO3 nanoparticles (0.5, 1.5, 2.5 and 3 wt%) were prepared on Brabender Plasticorder, which was then subjected to injection molding to get dumbbell-shaped specimens. Meanwhile, BaCO3 nanoparticles (nBaCO3) were prepared using ultrasonic cavitation technique. The size and shape of nBaCO3 particle was confirmed using transmission electron microscope and found to be capsule shape of diameter ~40–60 nm with aspect ratio (l/d) of 2.2–2.5. The reduction in particle size of nBaCO3 leads to formation of uniform suspension. The solution was kept as such for long time so as to nullify the charges developed over the surface of nanoparticles. The mechanical properties of nBaCO3-reinforced iPP-EPDM blends were studied using universal testing machine and impact tester. Moreover, thermal properties were studied using flammability tester, vicat softening temperature, thermo gravimetric analyzer and differential scanning calorimeter (DSC). Dispersion of nBaCO3 in iPP-EPDM matrix was studied using scanning electron microscope and X-ray diffractometer. The mechanical and thermal properties of iPP-EPDM/nBaCO3 blends were found to be improved significantly with increasing amount of nBaCO3 up to 2.5 wt%, which is due to good compatibility in between iPP and EPDM with uniform dispersion of nBaCO3. Moreover, due to agglomeration at 3 wt% loading of nBaCO3 few of the properties found to be decreased marginally.  相似文献   

11.
Epoxy hybrid composites fabricated by reinforcing 2‐hydroxy ethyl acrylate (2‐HEA) treated oil palm empty fruit bunch (EFB) and jute fibers. It assume that chemical modification of jute and oil palm EFB fibers increased fiber/matrix interfacial bonding and it results in enhanced thermal properties of hybrid composites. Dynamic mechanical and thermal analysis of treated hybrid composites was carried out. Results indicated that chemical modification of oil palm EFB and jute fibers affect the dynamic mechanical and thermal properties of hybrid composites. The storage modulus values of hybrid composites increases with chemical treatment and loss modulus increased with fiber treatment in hybrid composites. Damping factor peak values of treated hybrid composites shifted toward the lower temperature compared to both untreated hybrid composites. Cole–Cole analysis was made to understand the phase behaviour of the hybrid composites. Thermogravimetric analysis indicated an increased in thermal stability of hybrid composite with the incorporation of chemically modified fibers. POLYM. COMPOS., 36:1669–1674, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
In this study, the fabrication and characterization of bone ash filled biobased epoxy resin (Super SAP 100/1000, contains 37% biobased carbon content) nanocomposites are presented. Biosource bone ash was modified by size reduction and surface modification processes using a combination of ball milling and sonochemical techniques and characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The modified bone ash particles were incorporated into biobased epoxy with noncontact mixing process. The as-fabricated nanocomposites were characterized using various thermal and mechanical analyses. The nanocomposites showed significant improvement in flexural strength (41.25%) and modulus (34.56%) for 2 wt% filler loading. Dynamic mechanical analysis (DMA) results showed improvement in both storage modulus and loss modulus. Additionally, DMA results showed a slight reduction in glass transition temperature which also complies with differential scanning calorimetry results. Thermomechanical analysis results showed a reduction in the coefficient of thermal expansion. Thermogravimetric analysis results showed improved thermal stability at both onset of degradation and the major degradation. These enhanced thermal and mechanical performances of the epoxy nanocomposites allows them to be suitable for lightweight aerospace, automotive, and biomedical applications.  相似文献   

13.
Polystyrene (PS)/organomontmorillonite nanocomposites were prepared by melt processing with a twin‐screw extruder. Sodium montmorillonite was organically modified with stearyl trimethyl ammonium chloride to evaluate the effect of clay modification on the performance of the nanocomposites. A comparative account of nanocomposites prepared with the commercial clay Cloisite 20A (C20A) is presented. X‐ray diffraction studies indicated that the clay layers were completely dispersed, and a delaminated structure was formed in the case of C20A/PS and organomontmorillonite/PS nanocomposites. The dispersion characteristics of the clays within the matrix polymer were further investigated through transmission electron microscopy analysis. Mechanical tests revealed increases in the tensile, flexural, and impact strengths of 83, 55, and 74%, respectively, for C20A/PS nanocomposites at a 5% clay loading. The viscoelastic response of the nanocomposites, studied with dynamic mechanical analysis, also showed a substantial increase in the storage modulus of the nanocomposites with the incorporation of organically modified nanoclays. Furthermore, the melt‐state rheology of the organically modified nanocomposites displayed three distinct regions—glassy, plateau, and terminal—from the high‐frequency region to the low‐frequency region, with a considerable increase in the storage modulus in the glassy and terminal regions. Differential scanning calorimetry and thermogravimetric analysis were also used to evaluate the effect of the addition of nanoclays on the glass‐transition temperature and thermal stability of the PS matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The present investigation deals with the study of effect of molecular weight and structures of phenalkamine curing agents on the curing, mechanical, thermal and anticorrosive properties of epoxy based coatings. The phenalkamines were prepared by varying the composition of formaldehyde and diamine in the formulation. The structural characterization confirmed successful preparation of high molecular weight phenalkamines. These were then used as curing agents for air drying and thermally curable epoxy coatings. The effect of these phenalkamines on curing properties of epoxy resin as well as mechanical, chemical, thermal and dynamic thermo-mechanical properties of the resultant coatings was studied and compared with commercial phenalkamine. The anticorrosive properties of the coatings were evaluated by salt spray test and electrochemical impedance spectroscopy. The study revealed that high molecular weight phenalkamines resulted in faster surface drying due to rapid molecular weight build-up. The anticorrosive performance also improved as indicated by higher modulus and electrochemical potential values.  相似文献   

15.
In the study, polycyanurate (PCN)/epoxy resin (ER) blends are prepared to enhance the physical properties of cyanate ester resins. The effects of curing schedule and blend composition on their thermal, mechanical, and dielectrical properties of cured PCN/epoxy blend films are examined. FTIR analysis of the cured blend films exhibits the expected cyanurate and oxazolidinone peaks in all blend compositions except the film thermally treated for 1 h in the presence of 1% phenol. TGA results show that the thermal stability decreases with epoxy content in the blend film. From SEM analyses, it is observed that all films have very dense, smooth, and bubble free surface without phase separation. For the pure PCN, the dielectric constants are found to be 3.54–5.91 in the range of 10?1–107 Hz between 20°C and 200°C. PCN/epoxy blends up to 50% epoxy resin show a good stability of dielectric constant in this frequency band for 200°C, which is close to the dielectric constant of the homopolymerized PCN. Beyond this percentage of epoxy resin, dielectric constants of PCN/epoxy blends greatly increase at low‐frequency region (0.1–103 Hz) due to the interfacial polarization governed by Maxwell–Wagner–Sillars effect. POLYM. ENG. SCI., 58:820–829, 2018. © 2017 Society of Plastics Engineers  相似文献   

16.
This study investigates the influence of hemicellulose (Hc) on the chemical composition, thermal stability, mechanical properties, and morphology of carboxymethyl cellulose (CMC). Hc was isolated from oil palm trunk and then added into CMC at 10–30 wt% to prepare Hc-CMC films via solution casting method. The addition of Hc resulted in reduced visual transparency, rendering the blend films opaque. Fourier transform infrared spectroscopy verified the chemical interaction between Hc and CMC by revealing persistent and robust hydrogen bonding at specific spectral peaks (3483–3045 cm−1). The interaction between Hc and CMC was further indicated by the rougher interfacial structure as revealed in scanning electron microscopy (SEM). Thermal analysis via differential scanning calorimetry and thermogravimetry analysis indicated a decrement in thermal stability as Hc loadings increased in the CMC films. The highest tensile properties were observed in Hc-CMC blend films at a 20 wt% Hc loading, showcasing notable enhancement about 23%. The 20 wt% Hc-CMC blend films appeared as more suitable blending composition which having an enhanced physicochemical, thermal, and mechanical properties. This finding underscores its potential applicability in diverse industrial sectors, particularly in packaging applications.  相似文献   

17.
This paper presents experimental results of the effect of amine functionalization of carbon nanofibers (CNF) on the electrical, thermal, and mechanical properties of CNF/epoxy composites. The functionalized and non-functionalized CNFs (up to 3 wt%) were dispersed into epoxy using twin screw extruder. The specimens were characterized for electrical resistivities, thermal conductivity (K), UTS, and Vicker’s microhardness. The properties of the nanocomposites were compared with that of neat epoxy. The volume conductivity of the specimens increased by E12 S/cm and E09 S/cm in f-CNF/epoxy and CNF/epoxy, respectively, at 3 wt% filler loading. The increase in K for former was 106% at 150 °C, while for the latter it was only 64%. Similarly, UTS increased by 61% vs. 45% and hardness 65% vs. 43%. T g increased with increase in filler content. SEM examinations showed that functionalization resulted in better dispersion of the nanofibers and hence greater improvement in the studied properties of the nanocomposites.  相似文献   

18.
A high performance copolymer was prepared by using epoxy (EP) resin as matrix and 3,10,17,24-tetra-aminoethoxy lead phthalocyanine (APbPc) as additive with dicyandiamide as curing agent. Fourier-transform infrared spectroscopy, dynamic mechanical analysis (DMA), differential scanning calorimetric analysis (DSC), and thermogravimetric analysis (TGA) were used to study the curing behavior, curing kinetics, dynamic mechanical properties, impact and tensile strength, and thermal stability of EP/APbPc blends. The experimental results show that APbPc, as a synergistic curing agent, can effectively reduce the curing temperature of epoxy resin. The curing kinetics of the copolymer was investigated by non-isothermal DSC to determine kinetic data and measurement of the activation energy. DMA, impact, and tensile strength tests proved that phthalocyanine can significantly improve the toughness and stiffness of epoxy resin. Highest values were seen on the 20 wt% loading of APbPc in the copolymers, energy storage modulus, and impact strength increased respectively 388.46 MPa and 3.6 kJ/m2, Tg decreased 19.46°C. TGA curves indicated that the cured copolymers also exhibit excellent thermal properties.  相似文献   

19.
This work is concerned with the effect of an epoxy resin on the properties of rigid poly(vinyl chloride) (PVC). The epoxy resin concentrations of 0, 1, 2, 4, and 6 phr were used to prepare PVC/epoxy polymer blends and the viscoelastic behavior of the blends was investigated by dynamic mechanical thermal analysis and rheometry test. The results revealed that the low molecular weight epoxy resin did not greatly affect the viscoelastic properties of PVC. From the morphological point of view, the smallest droplet size of epoxy dispersed in the polymer blends was found in the sample with 1 phr epoxy resin, and the largest one was for the sample with 6 phr epoxy. The thermal properties of PVC/epoxy blends were investigated using differential scanning calorimetry and thermogravimetric analysis, as well. According to our research, the initial decomposition temperature of PVC was increased about 6°C by the incorporation of epoxy resin. The results of tensile test showed that the addition of epoxy resin decreased the elongation‐at‐break of PVC about 50% in the samples without calcium carbonate and about 25% in the samples containing calcium carbonate. Moreover, the failure mode of PVC was changed from a ductile fracture mode to a brittle fracture mode with the addition of epoxy resin. J. VINYL ADDIT. TECHNOL., 25:E72–E79, 2019. © 2018 Society of Plastics Engineers  相似文献   

20.
Polyester polyol (PP)‐based polyurethanes (PUs) consisting of two difunctional acids [1,4‐cyclohexanedicarboxylic acid (CHDA) and 1,6‐adipic acid (AA)] and also two diols [1,4‐cyclohexanedimethanol (CHDM) and 1,6‐hexanediol (HDO)] were synthesized by a two‐step procedure with a variable feed ratio of CHDA to AA but fixed ratio of CHDM and HDO. The prepared PPs and/or PUs were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction spectroscopy, and atomic force microscopy. The effects of difunctional acids on the thermal, mechanical, and dynamic mechanical thermal properties of PPs or PU films were investigated by thermogravimetry analysis, differential thermogravimetry and dynamic mechanical thermal analysis. The results show that PP exhibits a lowest viscosity with the mole fraction of CHDA and AA at 3 : 7 whereas it delivers a lowest melting point with the mole fraction at 9 : 1. After PPs being cross‐linked by isocyanate trimers, the impact resistance, shear strength and glass transition temperature increase the mixed‐acid formulations with increasing the content of CHDA. In detail, the resultant PU almost simultaneously exhibits the best mechanical and thermal properties when the mole fraction of CHDA and AA is kept constant at 9 : 1, thus giving rise to a high glass transition temperature of 56.4°C and a onset decomposition temperature of 350°C, and also delivering a balanced toughness and hardness with an impact resistance of 100 J/g and storage modulus as high as 109 Pa. This path for synthesis of PP‐based PU provides a design tool for high performance polymer coatings. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41246.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号