首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this paper we investigate the robustness of state feedback stabilized semilinear systems subject to inhomogeneous perturbations in terms of input-to-state stability. We consider a general class of exponentially stabilizing feedback controls which covers sampled discrete feedbacks and discontinuous mappings as well as classical feedbacks and derive a necessary and sufficient condition for the corresponding closed-loop systems to be input-to-state stable with exponential decay and linear dependence on the perturbation. This condition is easy to check and admits a precise estimate for the constants involved in the input-to-state stability formulation. Applying this result to an optimal control based discrete feedback yields an equivalence between (open-loop) asymptotic null controllability and robust input-to-state (state feedback) stabilizability.  相似文献   

2.
The main contribution of this technical note is to establish a link between the exponential stability of an unforced system and the input-to-state stability (ISS) via the Liapunov–Krasovskii methodology. It is proved that a system which is (globally, locally) exponentially stable in the unforced case is (globally, locally) input-to-state stable when it is forced by a measurable and locally essentially bounded input, provided that the functional describing the dynamics in the unforced case is (globally, on bounded sets) Lipschitz and the functional describing the dynamics in the forced case satisfies a Lipschitz-like hypothesis with respect to the input. Moreover, a new feedback control law is provided for delay-free linearizable and stabilizable time-delay systems, whose dynamics is described by locally Lipschitz functionals, by which the closed-loop system is ISS with respect to disturbances adding to the control law, a typical problem due to actuator errors.   相似文献   

3.
In this paper we consider discrete-time nonlinear systems that are affected, possibly simultaneously, by parametric uncertainties and other disturbance inputs. The min–max model predictive control (MPC) methodology is employed to obtain a controller that robustly steers the state of the system towards a desired equilibrium. The aim is to provide a priori sufficient conditions for robust stability of the resulting closed-loop system using the input-to-state stability (ISS) framework. First, we show that only input-to-state practical stability can be ensured in general for closed-loop min–max MPC systems; and we provide explicit bounds on the evolution of the closed-loop system state. Then, we derive new conditions for guaranteeing ISS of min–max MPC closed-loop systems, using a dual-mode approach. An example illustrates the presented theory.  相似文献   

4.
Two kinds of saturated controllers are designed for a class of feedforward systems and the closed-loop resulted is locally input-to-state stable and input-to-state stable, respectively. By the word "locally", it is meant that there are restrictions on the amplitude of inputs. At first, under the guidance of suitable energy functions, two kinds of saturated controllers are designed as locally input-to-state stabilizers for a class of perturbed linear systems, from which explicit gain estimations can be obtained for the subsequent design. Then under the conditions that two subsystems of the feedforward system are respectively of locally input-to-state stability and input-to-state stability, the small gain theory is used to determine saturated degrees for corresponding robust stabilizers. The stability proofs are given by using a new characterization of input-to-state stability that is based on the concept of ultimate boundedness. As an application, saturated controllers are designed for the partial dynamics of a certain inverted pendulum.  相似文献   

5.
In this paper we show that uniformly global asymptotic stability for a family of ordinary differential equations is equivalent to uniformly global exponential stability under a suitable nonlinear change of variables. The same is shown for input-to-state stability and input-to-state exponential stability, and for input-to-state exponential stability and a nonlinear H estimate.  相似文献   

6.
7.
This paper considers a concrete stochastic nonlinear system with stochastic unmeasurable inverse dynamics. Motivated by the concept of integral input-to-state stability (iISS) in deterministic systems and stochastic input-to-state stability (SISS) in stochastic systems, a concept of stochastic integral input-to-state stability (SiISS) using Lyapunov functions is first introduced. A constructive strategy is proposed to design a dynamic output feedback control law, which drives the state to the origin almost surely while keeping all other closed-loop signals almost surely bounded. At last, a simulation is given to verify the effectiveness of the control law.  相似文献   

8.
This paper develops a unifying framework for output feedback regulation of stochastic nonlinear systems with more general stochastic inverse dynamics. The contributions of this work are characterized by the following novel features: 1) Motivated by the concept of integral input-to-state stability (iISS) in deterministic systems and stochastic input-to-state stability (SISS) using Lyapunov function in stochastic systems, a concept of stochastic integral input-to-state stability (SiISS) using Lyapunov function is first introduced, two important properties of SiISS are obtained: (i) SiISS is strictly weaker than SISS using Lyapunov function; (ii) SiISS is stronger than the minimum-phase property. However, only under the minimum-phase assumption, there is no dynamic output feedback control law for global stabilization in probability. 2) Almost sure boundedness, a reasonable and stronger concept than boundedness in probability, is introduced. The purpose of introducing the concept is to prove the boundedness and convergence of some signals in the closed-loop control system. 3) Some important mathematical tools which play an essential role in the boundedness and convergence analysis of the closed-loop system are established. 4) A unifying framework is proposed to design a dynamic output feedback control law, which drives the states to the origin almost surely while maintaining all the closed-loop signals bounded almost surely.   相似文献   

9.
考虑具有状态和控制约束的有界未知扰动多变量Hammerstein系统,提出一种具有输入到状态稳定和有限L_2增益性能的鲁棒非线性模型预测控制策略.基于多变量线性子系统H_∞控制律,滚动预测非线性代数方程的解算误差,继而在线优化计算满足系统约束条件的预测控制量.利用输入到状态稳定性概念和L_2增益思想,建立闭环系统关于该扰动信号具有鲁棒稳定性和L_2增益的充分条件,使闭环系统不仅满足系统约束,而且对不确定扰动输入和解算误差具有鲁棒性.最后以工业聚丙烯多牌号切换过程控制为例,仿真验证本文算法的有效性.  相似文献   

10.
We consider a class of nonlinear control systems for which stabilizing feedbacks and corresponding Lyapunov functions for the closed-loop systems are available. In the presence of feedback delays and actuator errors, we explicitly construct input-to-state stability (ISS) Lyapunov-Krasovskii functionals for the resulting feedback delayed dynamics, in terms of the available Lyapunov functions for the original undelayed dynamics, which establishes that the closed-loop systems are input-to-state stable (ISS) with respect to actuator errors. We illustrate our results using a generalized system from identification theory and other examples.  相似文献   

11.
本文针对一端受到范德华力的不稳定剪切梁方程,考虑其输入–状态稳定性问题.通过可逆变换把方程等价地变成一个具有反馈循环的2×2的一阶运输方程与常微分方程的耦合系统.通过自抗扰控制方法,给出具有时变增益的扩张状态观测器来估计干扰.应用Backstepping变换和干扰估计量,设计系统的反馈控制来补偿系统本身的不稳定以及消除匹配干扰.通过C0–半群方法证明闭环系统的适定性,以及Lyapunov方法证明闭环系统的输入–状态稳定性.数值仿真验证理论结果的正确性.  相似文献   

12.
This paper studies the stability issue for switched nonlinear systems with input delay and disturbance. It is assumed that for the nominal system an exponential stabilizing controller is predesigned such that the switched system is stable under a certain switching signal, and a piecewise Lyapunov function for the corresponding closed-loop system is known. However, in the presence of input delay and disturbance, the system may be unstable under the same switching signal. For this case, a new Lyapunov–Krasovskii functional is firstly constructed based on the known Lyapunov function. Then, by employing this new functional, a new switching signal satisfying the new average dwell time conditions is constructed to guarantee the input-to-state stability of the system under a certain delay bound. The bound on the average dwell time is closely related to the bound on the input delay. Finally, numerical examples are given to illustrate the effectiveness of the proposed theory.  相似文献   

13.
刘晓华  高婵 《控制与决策》2015,30(12):2137-2144

针对一类具有持续扰动和输入约束的离散广义系统, 研究其鲁棒预测控制器的设计问题. 将输入状态稳定的概念引入广义系统预测控制, 在quasi-min-max 性能指标下, 提出了广义系统双模鲁棒预测控制器的设计方法, 证明了基于双模鲁棒预测控制器的闭环广义系统输入状态稳定, 且具有正则、因果性. 数值仿真结果验证了所提出方法的有效性.

  相似文献   

14.
Stabilization of uncertain sampled-data strict-feedback systems is addressed. The stability study is carried out on the Euler approximation of the exact discretized model of the plant. Firstly, a class of state-feedback controllers is developed that guarantees an input-to-state stability property for the closed-loop system. Additionally, assuming some hypotheses on the uncertain terms hold, a practical asymptotic stability property is ensured by designing an appropriate class of controllers.  相似文献   

15.
This paper proposes a new tool for quantized nonlinear control design of dynamic systems transformable into the dynamically perturbed strict-feedback form. To address the technical challenges arising from measurement and actuator quantization, a new approach based on set-valued maps is developed to transform the closed-loop quantized system into a large-scale system composed of input-to-state stable (ISS) subsystems. For each ISS subsystem, the inputs consist of quantization errors and interacting states, and moreover, the ISS gains can be assigned arbitrarily. Then, the recently developed cyclic-small-gain theorem is employed to guarantee input-to-state stability with respect to quantization errors and to construct an ISS-Lyapunov function for the closed-loop quantized system. Interestingly, it is shown that, under some realistic assumptions, any n-dimensional dynamically perturbed strict-feedback nonlinear system can be globally practically stabilized by a quantized control law using 2n three-level dynamic quantizers.  相似文献   

16.
This paper deals with the state and output feedback stabilisation problems for a family of nonlinear time-delay systems satisfying some relaxed triangular-type condition. The delay is supposed to be constant. Parameter-dependent control laws are used to compensate for the nonlinearities. Based on the Lyapunov–Krasovskii functionals, global exponential stability of the closed-loop systems is achieved. Finally, an extension to nonlinear time-varying delay systems is given.  相似文献   

17.
A new design scheme of stable adaptive fuzzy control for a class of nonlinear systems is proposed in this paper. The T-S fuzzy model is employed to represent the systems. First, the concept of the so-called parallel distributed compensation (PDC) and linear matrix inequality (LMI) approach are employed to design the state feedback controller without considering the error caused by fuzzy modeling. Sufficient conditions with respect to decay rate α are derived in the sense of Lyapunov asymptotic stability. Finally, the error caused by fuzzy modeling is considered and the input-tostate stable (ISS) method is used to design the adaptive compensation term to reduce the effect of the modeling error. By the small-gain theorem, the resulting closed-loop system is proved to be input-to-state stable. Theoretical analysis verifies that the state converges to zero and all signals of the closed-loop systems are bounded. The effectiveness of the proposed controller design methodology is demonstrated through numerical simulation on the chaotic Henon system.  相似文献   

18.
In this paper, a neuroadaptive control framework for continuous- and discrete-time nonlinear uncertain dynamical systems with input-to-state stable internal dynamics is developed. The proposed framework is Lyapunov based and unlike standard neural network (NN) controllers guaranteeing ultimate boundedness, the framework guarantees partial asymptotic stability of the closed-loop system, that is, asymptotic stability with respect to part of the closed-loop system states associated with the system plant states. The neuroadaptive controllers are constructed without requiring explicit knowledge of the system dynamics other than the assumption that the plant dynamics are continuously differentiable and that the approximation error of uncertain system nonlinearities lie in a small gain-type norm bounded conic sector. This allows us to merge robust control synthesis tools with NN adaptive control tools to guarantee system stability. Finally, two illustrative numerical examples are provided to demonstrate the efficacy of the proposed approach.  相似文献   

19.
This paper deals with the stabilization problem of spacecraft rendezvous in the presence of disturbances and input saturation. A dead zone operator based model is used to describe the saturation phenomenon. By using Lyapunov method, two groups of control laws are obtained, which ensure the input-to-state stability and the input-to-state practical stability of the closed-loop systems respect to disturbance acceleration, respectively. Simulation results are provided to illustrate the effectiveness of the proposed approaches.  相似文献   

20.
In this article, the problems of exponential stability analysis and stabilisation of linear time-varying systems described by a class of second-order vector differential equations are considered. Using bounding techniques on the trajectories of a linear time-varying system, the stability problem of the time-varying system is transformed to that of a time-invariant system and a new sufficient condition for the exponential stability is obtained. Moreover, the new criterion is proven to be superior to a test presented in the recent literature. Finally, the proposed criterion is applied to the exponential stabilisation problem via state feedback. The results are illustrated by several numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号