首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper mainly focuses on designing a sliding mode boundary controller for a single flexible-link manipulator based on adaptive radial basis function (RBF) neural network. The flexible manipulator in this paper is considered to be an Euler-Bernoulli beam. We first obtain a partial differential equation (PDE) model of single-link flexible manipulator by using Hamiltons approach. To improve the control robustness, the system uncertainties including modeling uncertainties and external disturbances are compensated by an adaptive neural approximator. Then, a sliding mode control method is designed to drive the joint to a desired position and rapidly suppress vibration on the beam. The stability of the closed-loop system is validated by using Lyapunov’s method based on infinite dimensional model, avoiding problems such as control spillovers caused by traditional finite dimensional truncated models. This novel controller only requires measuring the boundary information, which facilitates implementation in engineering practice. Favorable performance of the closed-loop system is demonstrated by numerical simulations.  相似文献   

2.
Proposes a systematic and theoretically sound way to design a global optimal discrete-time fuzzy controller to control and stabilize a nonlinear discrete-time fuzzy system with finite or infinite horizon (time). A linear-like global system representation of a discrete-time fuzzy system is first proposed by viewing such a system in a global concept and unifying the individual matrices into synthetic matrices. Then, based on this kind of system representation, a discrete-time optimal fuzzy control law which can achieve a global minimum effect is developed theoretically. A nonlinear two-point boundary-value-problem (TPBVP) is derived as a necessary and sufficient condition for the nonlinear quadratic optimal control problem. To simplify the computation, a multi-stage decomposition of the optimization scheme is proposed, and then a segmental recursive Riccati-like equation is derived. Moreover, in the case of time-invariant fuzzy systems, we show that the optimal controller can be obtained by just solving discrete-time algebraic Riccati-like equations. Based on this, several fascinating characteristics of the resultant closed-loop fuzzy system can easily be elicited. The stability of the closed-loop fuzzy system can be ensured by the designed optimal fuzzy controller. The optimal closed-loop fuzzy system can not only be guaranteed to be exponentially stable, but also stabilized to any desired degree. Also, the total energy of system output is absolutely finite. Moreover, the resultant closed-loop fuzzy system possesses an infinite gain margin, i.e. its stability is guaranteed no matter how large the feedback gain becomes. An example is given to illustrate the proposed optimal fuzzy controller design approach and to demonstrate the proven stability properties  相似文献   

3.
Control problems in spatially distributed systems are challenging because the disturbance is of infinite dimensions. To this end, this paper discusses an infinite dimensional disturbance observer design, which is illustrated based on a partial differential equation (PDE) model of a nonlinear three‐dimensional Euler‐Bernoulli beam. The basic idea of the observer design is to modify the estimations based on the difference between the estimated output and actual output. Moreover, an auxiliary parameter system is established to help with the analysis. Then a Lyapunov function candidate consisting of the energy of the system, the observer error and an auxiliary term is given. After a series of analyses of the function, distributed controllers and boundary controllers based on the proposed observer are given to restrain vibration. Finally, by numerical simulations, the convergence of the observer is demonstrated, and the efficacy of control performance is also shown.  相似文献   

4.
This paper concerns the analysis of an iterative scheme delivering approximate control laws for the tracking regulation problems for nonlinear systems. The procedure can be applied to finite‐ and infinite‐dimensional systems, and the underlying methodology derives from the geometric methods, which have been developed for both linear and nonlinear systems. In the nonlinear case, the main tool is the center manifold theorem. Indeed, in the geometric methodology, under the assumption that the signals to be tracked are generated by a finite‐dimensional exo‐system, the desired control is obtained by solving a pair of operator equations called the regulator equations. In this paper, we extend the concept of regulator equations to what we refer to as the dynamic regulator equations. Just as it is generally quite difficult to solve the regulator equations, it can be equally difficult to solve the dynamic regulator equations. As the authors have already shown in the linear case, a straightforward attempt to solve the dynamic regulator equations leads to a singular system, which can be regularized to obtain an iterative scheme that provides approximate control laws that provide accurate tracking with very a small tracking error after only a couple of iterations. In this paper, we generalize the iterative scheme to nonlinear systems and provide error estimates for the first 3 iterations. Both finite‐ and infinite‐dimensional examples are given to validate the estimates. We comment that the method has also been applied to a wide range of nonlinear distributed parameter examples described in the references.  相似文献   

5.
An important problem in the distributed control of large-scale and infinite dimensional systems is related to the choice of the appropriate controller architecture. We utilize backstepping as a tool for distributed control of nonlinear infinite dimensional systems on lattices, and provide the answer to the following question: what is the controller architecture induced by distributed backstepping design? In particular, we study the case in which we start backstepping design with decentralized control Lyapunov function (CLF), and cancel all interactions at each step of backstepping. For this control law we quantify the number of control induced interactions necessary to guarantee desired dynamical behavior of the infinite dimensional system. We also demonstrate how the controllers with favorable architectures can be designed  相似文献   

6.
We study a stabilizing multi-model predictive control strategy for controlling nonlinear process at different operating conditions. The control algorithm is a receding horizon scheme with a quasi-infinite horizon objective function that has finite and infinite horizon cost components. The finite horizon cost consists of free input variables that direct the system towards a terminal region which contains the desired operating point. The infinite horizon cost has an upper bound and steers the system to the desired operating point. The system is represented by a sequence of piecewise linear models. Based on the condition of the system states, the sequence of piecewise linear models is updated and the controller’s objective function switches form quasi-infinite to infinite horizon objective function. This results in a hybrid control structure. A recent approach in the analysis of hybrid systems that uses multiple Lyapunov functions is employed in the stability analysis of the closed-loop system. The stabilizing hybrid control strategy is illustrated on two examples and their closed-loop stability properties are studied.  相似文献   

7.
针对受外部干扰和具有结构参数不确定性的柔性卫星系统,为了抑制其振动和避免控制溢出问题,采用Hamilton变分原理和Euler-Bernoulli梁理论建立了结构无穷维偏微分方程模型,随后基于该无穷维模型设计了带有干扰自适应律的自适应边界控制对柔性卫星振动进行主动控制,并证明了闭环柔性卫星控制系统解的存在性、唯一性和收敛性.最后,仿真结果验证了所设计的自适应边界控制算法的有效性.  相似文献   

8.
9.
对存在输入饱和约束和输入可逆静态非线性的系统,采用两步法广义预测控制策略. 首先用线性广义预测控制策略得到中间变量,代表期望的控制作用,然后用解方程方法补偿可逆 静态非线性并用解饱和方法满足饱和约束,得到实际的控制作用.两步法计算简单,特别适用于 快速控制的场合.将该控制系统闭环结构转化为静态非线性增益反馈结构,利用Popov定理分 析了该系统的闭环稳定性,得到了稳定的充分条件,并具体给出了有效的控制器参数确定算法使 得稳定性结论具备实用的价值.给出了算例验证了稳定条件.  相似文献   

10.
We propose a design method for a global optimal fuzzy controller to control and stabilize a continuous fuzzy system with free- or fixed-end point under finite or infinite horizon (time). A linear-like global system representation of continuous fuzzy system is first proposed by viewing a continuous fuzzy system in global concept and unifying the individual matrices into synthetical matrices. Based on this, the optimal control law which can achieve global minimum effect is developed theoretically. The nonlinear segmental two-point boundary-value problem is derived for the finite-horizon problem and a forward Riccati-like differential equation for the infinite-horizon problem. The stability of the closed-loop fuzzy system can be ensured by the designed optimal fuzzy controller. The optimal closed-loop fuzzy system cannot only be guaranteed to be exponentially stable, but also be stabilized to any desired degree. Also, the total energy of system output is absolutely finite. Moreover, the resultant closed-loop fuzzy system possesses an infinite gain margin  相似文献   

11.
This paper proposes two novel stable fuzzy model predictive controllers based on piecewise Lyapunov functions and the min-max optimization of a quasi-worst case infinite horizon objective function. The main idea is to design state feedback control laws that minimize the worst case objective function based on fuzzy model prediction, and thus to obtain the optimal transient control performance, which is of great importance in industrial process control. Moreover, in both of these predictive controllers, piecewise Lyapunov functions have been used in order to reduce the conservatism of those existent predictive controllers based on common Lyapunov functions. It is shown that the asymptotic stability of the resulting closed-loop discrete-time fuzzy predictive control systems can be established by solving a set of linear matrix inequalities. Moreover, the controller designs of the closed-loop control systems with desired decay rate and input constraints are also considered. Simulations on a numerical example and a highly nonlinear benchmark system are presented to demonstrate the performance of the proposed fuzzy predictive controllers.  相似文献   

12.
Obtaining a representative model in feedback control system design problems is a key step and is generally a challenge. For spatially continuous systems, it becomes more difficult as the dynamics is infinite dimensional and the well known techniques of systems and control engineering are difficult to apply directly. In this paper, observer design is reported for one-dimensional Burgers equation, which is a non-linear partial differential equation. An infinite dimensional form of the observer is demonstrated to converge asymptotically to the target dynamics, and proper orthogonal decomposition is used to obtain the reduced order observer. When this is done, the corresponding observer is shown to be successful under certain circumstances. The paper unfolds the connections between target dynamics, observer and their finite dimensional counterparts. A set of simulation results has been presented to justify the theoretical claims of the paper.  相似文献   

13.
曾启杰  章云  唐斌 《控制工程》2013,20(5):849-853
实际控制过程中,时滞的引入常常导致系统性能的下降,也使得系统的稳定性分析变得困难。从一类具有时滞项的线性时不变( LTI) 系统的特征根求解出发,研究了系统的稳定性分析问题。复平面上系统特征根的位置不仅决定了系统的绝对稳定性,还决定系统的相对稳定性-瞬态性能。由于时滞的引入,系统特征方程变成超越方程,其解的数量为无穷。并提出一种从超越方程实部和虚部系数中提取出双向量并结合二维向量旋转的解决方法,可以准确简洁地求出超越方程在复平面上指定区域边界上的根。最后给出仿真实例表明了算法的正确性和有效性。  相似文献   

14.
In this paper, we consider the use of nonlinear networks towards obtaining nearly optimal solutions to the control of nonlinear discrete-time (DT) systems. The method is based on least squares successive approximation solution of the generalized Hamilton-Jacobi-Bellman (GHJB) equation which appears in optimization problems. Successive approximation using the GHJB has not been applied for nonlinear DT systems. The proposed recursive method solves the GHJB equation in DT on a well-defined region of attraction. The definition of GHJB, pre-Hamiltonian function, HJB equation, and method of updating the control function for the affine nonlinear DT systems under small perturbation assumption are proposed. A neural network (NN) is used to approximate the GHJB solution. It is shown that the result is a closed-loop control based on an NN that has been tuned a priori in offline mode. Numerical examples show that, for the linear DT system, the updated control laws will converge to the optimal control, and for nonlinear DT systems, the updated control laws will converge to the suboptimal control.  相似文献   

15.
In this paper, we consider the use of nonlinear networks towards obtaining nearly optimal solutions to the control of nonlinear discrete-time (DT) systems. The method is based on least squares successive approximation solution of the generalized Hamilton-Jacobi-Bellman (GHJB) equation which appears in optimization problems. Successive approximation using the GHJB has not been applied for nonlinear DT systems. The proposed recursive method solves the GHJB equation in DT on a well-defined region of attraction. The definition of GHJB, pre-Hamiltonian function, HJB equation, and method of updating the control function for the affine nonlinear DT systems under small perturbation assumption are proposed. A neural network (NN) is used to approximate the GHJB solution. It is shown that the result is a closed-loop control based on an NN that has been tuned a priori in offline mode. Numerical examples show that, for the linear DT system, the updated control laws will converge to the optimal control, and for nonlinear DT systems, the updated control laws will converge to the suboptimal control.  相似文献   

16.
在无限时区风险灵敏度指标下,研究了一类具有严格反馈形式的 Markov 跳跃非线性系统的控制器设计问题.首先,将此问题的可解性转化为一类 HJB 方程的可解性;然后根据此方程,构造性地给出一个与模态无关的控制器,此控制器可保证闭环系统是依概率有界的,且风险灵敏度指标不大于任意给定的正常数,特别地,当噪声项在原点处消逝时,能够确保风险灵敏度指标为零;最后,通过仿真例子验证了理论结果的正确性.  相似文献   

17.
不确定离散广义系统的D稳定鲁棒控制   总被引:2,自引:0,他引:2  
胡刚  谢湘生 《自动化学报》2003,29(1):142-148
研究了具有圆盘区域极点约束的一类不确定离散广义系统的鲁棒控制问题.首先,研 究了控制输入项不含扰动的不确定离散广义系统,提出了广义二次D镇定的概念,基于矩阵不 等式和广义Riccati方程,给出了一种广义二次D镇定器的设计方法,所得到的结论能够实现研 究目标;然后,讨论了控制输入项含有扰动的不确定离散广义系统,在一定的假设条件下,给出 了期望状态反馈增益阵的存在条件及其解析表达式.最后,用数值示例说明所给方法的有效性 及可行性.  相似文献   

18.
A feedback control strategy is designed to asymptotically stabilize a multi‐degree‐of‐freedom (DOF) nonlinear stochastic systems undergoing Markovian jumps. First, a class of hybrid nonlinear stochastic systems with Markovian jumps is reduced to a one‐dimensional averaged Itô stochastic differential equation for controlled total energy. Second, the optimal control law is deduced by applying the dynamical programming principle to the ergodic control problem of the averaged systems with an undetermined cost function. Third, the cost function is determined by the demand of stabilizing the averaged systems. A Lyapunov exponent is introduced to analyze approximately the asymptotic stability with probability one of the originally controlled systems. To illustrate the application of the present method, an example of stochastically excited two coupled nonlinear oscillators with Markovian jumps is worked out in detail.  相似文献   

19.
Adaptive NN control of uncertain nonlinear pure-feedback systems   总被引:3,自引:0,他引:3  
This paper is concerned with the control of nonlinear pure-feedback systems with unknown nonlinear functions. This problem is considered difficult to be dealt with in the control literature, mainly because that the triangular structure of pure-feedback systems has no affine appearance of the variables to be used as virtual controls. To overcome this difficulty, implicit function theorem is firstly exploited to assert the existence of the continuous desired virtual controls. NN approximators are then used to approximate the continuous desired virtual controls and desired practical control. With mild assumptions on the partial derivatives of the unknown functions, the developed adaptive NN control schemes achieve semi-global uniform ultimate boundedness of all the signals in the closed-loop. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.  相似文献   

20.
In this paper we introduce and solve the partially observed optimal stopping non-linear risk-sensitive stochastic control problem for discrete-time non-linear systems. The presented results are closely related to previous results for finite horizon partially observed risk-sensitive stochastic control problem. An information state approach is used and a new (three-way) separation principle established that leads to a forward dynamic programming equation and a backward dynamic programming inequality equation (both infinite dimensional). A verification theorem is given that establishes the optimal control and optimal stopping time. The risk-neutral optimal stopping stochastic control problem is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号