共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, two novel fault-tolerant control design approaches are proposed for linear MIMO systems with actuator additive faults, multiplicative faults and unmatched uncertainties. For time-varying multiplicative and additive faults, new adaptive laws and additive compensation functions are proposed. A set of conditions is developed such that the unmatched uncertainties are compensated by actuators in control. On the other hand, for unmatched uncertainties with their projection in unmatched space being not zero, based on a (vector) relative degree condition, additive functions are designed to compensate for the uncertainties from output channels in the presence of actuator faults. The developed fault-tolerant control schemes are applied to two aircraft systems to demonstrate the efficiency of the proposed approaches. 相似文献
2.
3.
Yan-Hui Jing 《International journal of systems science》2017,48(13):2826-2837
In this paper, the problem of adaptive fault-tolerant tracking control for a class of uncertain nonlinear systems in the presence of input quantisation and unknown control direction is considered. By choosing a class of particular Nussbaum functions, an adaptive fault-tolerant control scheme is designed to compensate actuator faults and input quantisation while the control direction is unknown. Compared with the existing results, the proposed controller can directly compensate for the nonlinear term caused by actuator faults and the nonlinear decomposition on the quantiser without estimating its bound. Furthermore, via Barhalant's Lemma, it is proven that all the signals of the closed-loop system are globally uniformly bounded and the tracking error converges into a prescribed accuracy in prior. Finally, an illustrative example is used for verifying effectiveness of the proposed approach. 相似文献
4.
Xuan Cai Gang Wang Yu Li Luyan Xu Zhihua Zhang 《International journal of systems science》2019,50(6):1229-1243
This paper investigates the prescribed performance distributed output consensus problem under directed graphs. With the utilisation of a filter, the original system of each follower can be converted into a strict-feedback system. Then, we design a prescribed performance output feedback distributed control protocol by applying the backstepping approach in the converted system. The proposed protocol can guarantee that the consensus tracking error of each agent evolves in predefined decaying bounds to achieve the prescribed performance, that is, the consensus tracking error of each agent converges to a predetermined residual set at a convergence rate no less than a prespecified value and exhibiting a maximum overshoot less than a preassigned constant. Moreover, during the process of consensus, all the signals in the closed-loop system are globally uniformly bounded. A simulation example is given to verify the effectiveness of the proposed control protocol. 相似文献
5.
The focus of this paper is on the design and simulation of robust tracking control for an air-breathing hypersonic vehicle (AHV), which is affected by high nonlinearity, uncertain parameters and input constraints. The linearisation method is employed for the longitudinal AHV model about a specific trim condition, and then considering the additive uncertainties of three parameters, the linearised model is just in the form of affine parameter dependence. From this point, the linear parameter-varying method is applied to design the desired controller. The poles for the closed-loop system of the linearised model are placed into a desired vertical strip, and the quadratic stability of the closed-loop system is guaranteed. Input constraints of the AHV are addressed by additional linear matrix inequalities. Finally, the designed controller is evaluated on the nonlinear AHV model and simulation results demonstrate excellent tracking performance with good robustness. 相似文献
6.
Jinchao Shao;Wei-Wei Che;Ke Shao; 《国际强度与非线性控制杂志
》2024,34(14):9928-9948
》2024,34(14):9928-9948
This paper addresses the adaptive saturation prescribed performance control problem for air-breathing hypersonic vehicles with parameter uncertainties and unknown external disturbances. First of all, different from the traditional performance function, a novel class of performance functions is presented without the initial state information, which does not require to reset parameters even if the initial velocity and altitude change. To ensure the successful design of the velocity controller and altitude controller, the constrained errors are transformed into the unconstrained errors by the projection technique. Secondly, the adaptive neural network and the sliding mode control techniques are combined to design the adaptive neural network sliding mode controllers, which guarantee that the velocity and altitude tracking errors can respectively approach the predetermined regions within the identical preset finite time. Finally, the effectiveness of the designed controllers is verified by an example with comparisons. 相似文献
7.
8.
ABSTRACTThis paper addresses the fault-tolerant control issue for a class of flexible air-breathing hypersonic vehicles. Firstly, a longitudinal dynamic model with process faults is established, which contains an ordinary differential equation (ODE) for rigid body, an Euler–Bernoulli beam equation for flexible modes, and a new boundary connection between them; Secondly, a novel fault-tolerant control scheme is proposed to accommodate process faults and suppress vibrations, which relies on the direct Lyapunov method and the bilinear matrix inequalities (BMIs) technique; Thirdly, in order to compute the gain matrices of the fault-tolerant control law, a two-step algorithm is provided to solve the BMI feasibility problem in terms of linear matrix inequality optimisation technique. Finally, the simulation results are provided to illustrate the effectiveness of the theoretical results. 相似文献
9.
Zhihua Qu Author Vitae Curtis M. Ihlefeld Author Vitae Author Vitae Apiwat Saengdeejing Author Vitae 《Automatica》2003,39(10):1763-1771
In this paper, the problem of devising a fault-tolerant robust control for a class of nonlinear uncertain systems is investigated. Possible failures of the sensor measuring the state variables are considered, and a robust measure is developed to identify the stability- and performance-vulnerable failures. Based on evaluation of the robust measure, a fault-tolerant robust control will switch itself between one robust control strategy designed under normal operation and another under the faulty condition. It is shown that, under two input-to-state stability conditions, the proposed scheme guarantees not only the desired performance under normal operations but also robust stability and best achievable performance when there is a sensor failure of any kind. 相似文献
10.
Shuyi Xiao 《International journal of systems science》2013,44(11):2168-2188
In this paper, a robust adaptive fault tolerant controller guaranteeing with time-varying performance bounds is designed for a class of time delay uncertain nonlinear systems subject to actuator failures and external disturbance. The influence of time delay on the system is mitigated and the system performance can be guaranteed by introducing a positive nonlinear control gain function and the generalised restricted potential function. A new method with more design degrees of freedom is developed to ensure the norm of the system state within a-priori, user-defined time varying performance bounds. Using the online estimation information provided by adaptive mechanism, a robust adaptive fault-tolerant control method guaranteeing time varying performance bounds is proposed. It is shown that all the signals of the resulting closed-loop system are bounded and the system state less than a-priori, user-defined performance bounds. Finally, simulation results are given to demonstrate the efficacy of the proposed fault-tolerant control method. 相似文献
11.
12.
Claudio Bonivento Author Vitae Author Vitae Lorenzo Marconi Author Vitae Andrea Paoli Author Vitae 《Automatica》2004,40(3):355-371
In this paper we propose an innovative way of dealing with the design of fault-tolerant control systems. We show how the nonlinear output regulation theory can be successfully adopted in order to design a regulator able to offset the effect of all possible faults which can occur and, in doing so, also to detect and isolate the occurred fault. The regulator is designed by embedding the (possible nonlinear) internal model of the fault. This idea is applied to the design of a fault-tolerant controller for induction motors in presence of both rotor and stator mechanical faults. 相似文献
13.
In this paper, we use the radial basis function neural network and the finite-time H∞ adaptive fault-tolerant control technique to deal with the flutter problem of wings with propulsion system, which is affected by input saturation, time delay, time-varying parameter uncertainties and external disturbances. Then sensor and actuator faults are both considered in the control design. The theory content of this article includes the trajectory optimization, modeling of wing flutter and fault-tolerant controller design. The stability of the finite-time H∞ adaptive fault-tolerant controller is theoretically proved. Finally, simulation results are given to demonstrate the effectiveness of the scheme. 相似文献
14.
研究不确定系统D-稳定鲁棒容错H∞控制问题.基于连续型执行器故障模式,利用线性矩阵不等式(LMI)给出了系统D-稳定的鲁棒容错输出反馈控制器存在的充分条件,并将动态输出反馈控制器设计方法归结为求解一族线性矩阵不等式组.仿真示例表明,无论执行器是否发生故障,所得到的动态输出反馈控制器不仅保证闭环系统是D-稳定的,而且满足给定的H∞干扰指标,从而验证了所提出的控制器设计方法的有效性. 相似文献
15.
In this paper, a fuzzy dynamic characteristic modeling and adaptive control method is proposed for a class of nonlinear systems. By employing fuzzy dynamic characteristic model, the controlled plant is described as a slowly time-varying fuzzy system, wherein the parameters are estimated online by using recursive Least-Squares algorithm. Under this framework, a fuzzy adaptive controller is constructed, and the stability condition of the closed-loop system is also derived. The main advantage of the proposed m... 相似文献
16.
This paper presents an adaptive method to solve the robust fault-tolerant control (FTC) problem for a class of large scale systems against actuator failures and lossy interconnection links. In terms of the special distributed architectures, the adaptation laws are proposed to estimate the unknown eventual faults of actuators and interconnections, constant external disturbances, and controller parameters on-line. Then a class of distributed state feedback controllers are constructed for automatically compensating the fault and disturbance effects on systems based on the information from adaptive schemes. On the basis of Lyapunov stability theory, it shows that the resulting adaptive closed-loop large-scale system can be guaranteed to be asymptotically stable in the presence of uncertain faults of actuators and interconnections, and constant disturbances. The proposed design technique is finally evaluated in the light of a simulation example. 相似文献
17.
一类不确定非线性切换系统的鲁棒容错控制 总被引:1,自引:0,他引:1
研究一类不确定非线性切换系统的鲁棒容错控制问题,当执行器失效或部分失效时,利用Lyapunov函数法建立切换闭环系统混杂状态反馈容错控制器存在的充分条件;然后运用线性矩阵不等式将鲁棒容错控制器设计问题转化为一组线性矩阵不等式的可行解问题,从而借助Matlab中线性矩阵不等式工具箱求解;最后通过数值算倒验证了所提出设计方法的有效性. 相似文献
18.
19.
In this paper, indirect adaptive state feedback control schemes are developed to solve the robust faulttolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant systems. A more general and practical model of actuator faults is presented. While both eventual faults on actuators and perturbations are unknown, the adaptive schemes are addressed to estimate the lower and upper bounds of actuator-stuck faults and perturbations online, as well as to estimate control effectiveness on actuators. Thus, on the basis of the information from adaptive schemes, an adaptive robust state feed-back controller is designed to compensate the effects of faults and perturbations automatically. According to Lyapunov stability theory, it is shown that the robust adaptive closed-loop systems can be ensured to be asymptotically stable under the influence of actuator faults and bounded perturbations. An example is provided to further illustrate the fault compensation effectiveness. 相似文献