共查询到20条相似文献,搜索用时 0 毫秒
1.
为了探讨AlMgB_(14)-30%TiB_2(质量分数)复合材料的高温氧化行为,采用电场激活与压力辅助烧结(FAPAS)法制备了这一复合材料。以SX2-4-10箱式电阻炉高温氧化10 h(600~1 000℃),研究了其不同温度下的氧化行为;采用X射线衍射仪(XRD)分析了其氧化表面的相结构,以扫描电子显微镜(SEM)观察氧化后的表面和截面形貌。结果表明:AlMgB_(14)-30%TiB_2复合材料在600℃时发生氧化反应,相为TiB_2,AlMgB_(14)相发生氧化反应的温度为800℃;氧化温度达到1 000℃时,氧化层表面由一层玻璃状的B2O3组成。 相似文献
2.
3.
为了揭示纳米TiB_2对AlMgB_(14)基复合材料抗高温氧化性能的影响机理,对不同TiB_2含量(质量分数分别为0、10%和30%)的AlMgB_(14)基复合材料的抗高温氧化性能进行了研究和讨论,试验温度800℃,氧化时间10h。试样氧化前后的表面和截面形貌采用扫描电子显微镜(SEM)进行观察,氧化产物采用X射线衍射仪(XRD)进行分析。结果表明:随着TiB_2含量的增加,氧化膜厚度逐渐减小,氧化速率逐渐变缓,氧化层主要物相由Al_2O_3逐渐变化为TiO和TiO_2,说明添加的纳米TiB_2能显著阻止复合材料内部组织的氧化,提高复合材料的抗高温氧化性能。 相似文献
4.
利用纳米SiO2(nano SiO2)早期可促进聚合物水泥基复合材料水化速率、提升其力学性能、改善其界面过渡区(ITZ)性能及优化其孔隙结构等特点,借助XRD、SEM、EDS、显微硬度(MH)及压汞(MIP)等试验,揭示了nano SiO2对聚合物水泥基复合材料早期性能影响的微观机制。结果表明:当nano SiO2掺量为2wt%时,聚合物水泥基复合材料的力学性能最优,3 d和7 d龄期抗压强度分别为57.5 MPa和67.3 MPa,较仅仅掺加聚合物的水泥基复合材料分别提高了12.7%和13.9%;nano SiO2的掺入改变了聚合物水泥基复合材料水化产物数量及微观形貌。对于ITZ性能,nano SiO2掺入后,聚合物水泥硬化浆体-骨料的ITZ厚度减小,形貌变得更加致密;ITZ的钙硅比因nano SiO2的加入变小而其显微硬度变大;此外,nano SiO2加入后可以进一步填充聚合物水泥基复合材料更加细小的孔隙,使其凝胶孔比例变高,最可几孔径变小,大大优化了聚合物水泥基复合材料的孔隙结构。 相似文献
5.
为提高纳米SiO2在硅橡胶(SR)基体中的分散性及两相间的界面结合力,设计以羟基硅油(HSO)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)为纳米SiO2的表面封端改性剂,并将改性SiO2与双组份加成型液体SR复合得到改性纳米SiO2/SR复合材料。通过一系列表征手段对改性纳米SiO2的形貌结构及其在乙醇中的分散性等进行分析,研究了改性纳米SiO2对纳米SiO2/SR复合材料的断面形貌、力学性能及热稳定性的影响。结果表明:KH570成功接枝到纳米SiO2表面并与SR基体间形成化学键。当HSO协同KH570改性纳米SiO2时,可有效改善纳米SiO2在SR基体中的分散性能及纳米SiO2与SR两相间的界面结合性能,并显著提高纳米SiO2/SR复合材料的力学性能和热稳定性。将SiO2∶HSO∶KH570以质量比为2.0∶0.2∶0.6处理的改性纳米SiO2粒子,得到的改性纳米SiO2/SR复合材料起始热分解温度提高了230℃。当SiO2∶HSO∶KH570质量比为2.0∶0.2∶0.45时,改性纳米SiO2/SR复合材料的拉伸强度和断裂伸长率分别提高了约1倍。 相似文献
6.
作为20世纪90年代兴起的一类连续陶瓷纤维增强陶瓷基复合材料,连续氧化铝纤维增韧氧化铝(Al2O3f/Al2O3)复合材料已经发展为与Cf/SiC、SiCf/SiC等非氧化物复合材料并列的陶瓷基复合材料。以多孔基体实现基体裂纹偏转成为Al2O3f/Al2O3复合材料主要的增韧设计方法,形成的多孔Al2O3f/Al2O3复合材料具有优异的抗氧化性能和高温力学性能,可在高温富氧、富含水汽的中等载荷工况中长时服役,是未来重要的热结构材料。经过近30年的发展,多孔Al2O3f/Al2O3复合材料已被应用于航空发动机、燃气轮机等热端部件。本文综述了多孔Al2O3f... 相似文献
7.
8.
碳纳米管-TiB2陶瓷基复合材料的制备与性能研究 总被引:1,自引:0,他引:1
研究了用热压烧结(HP)方法制备TiB2-xwt%CNTs-5wt%Ni(x=0.1、0.3、0.5、1、4)复合材料的工艺条件、力学性能和微观结构.用XRD研究了其相组成,用SEM观察了复合材料的断口形貌和裂纹扩展.研究表明碳纳米管的加入使复合材料的硬度、弯曲强度和断裂韧性得到明显的提高,并且在碳纳米管含量为0.5wt%左右时,复合材料的硬度达到20.5GPa,弯曲强度为496MPa,断裂韧性达7.25MPa·m1/2;断口形貌分析表明碳纳米管主要分布于TiB2颗粒的晶界处,复合材料的增韧机制主要是碳纳米管的拔出机制和桥联机制. 相似文献
9.
Fe/Al2O3复合材料的制备和性能 总被引:1,自引:0,他引:1
用石墨埋烧方法制备Fe/Al2O3复合材料,对其力学性能和微观结构进行了分析。结果表明:Fe/Al2O3复合材料的弯曲强度与断裂韧性均随Al2O3含量的升高先升高后降低,当Al2O3含量(质量分数)为70%时,其弯曲强度与断裂韧性分别达到602.49 MPa和9.33 MPa·m1/2,其硬度随Al2O3含量先降低后升高。在烧结过程中在Fe颗粒周围形成一种成分为FeO与FeAl2O4的壳体,在壳体与Fe颗粒之间存在微裂纹缺陷。壳体的形成和壳体与金属颗粒间的微裂纹钝化了外部应力,从而提高了复合材料的韧性。 相似文献
10.
为了改善聚酰亚胺(PI)的热学性能和冲击断裂强度、弯曲强度和硬度等力学性能,通过液相刻蚀三元层状陶瓷Ti3AlC2制备了二维层状结构纳米Ti3C2Tx,利用XRD、FE-SEM对产物进行了物相分析和微观结构表征;采用湿法球磨和热压成型法制备了不同Ti3C2Tx含量的Ti3C2Tx/PI复合材料,考察了Ti3C2Tx对复合材料热学性能、冲击断裂强度、弯曲强度和硬度等的影响,并分析了断面形貌。结果表明,所制备的Ti3C2Tx为纳米片层结构,片层厚度为20~50 nm,片层堆叠;二维Ti3C2Tx在PI基体中分散均匀,且固化过程中PI进入Ti3C2Tx层间提高了二者之间的结合力,使界面结合良好;Ti3C2Tx纳米片的添加提高了PI的玻璃化转变温度并改善了基体的冲击断裂强度、弯曲强度和硬度等,当Ti3C2Tx添加量为0.25wt%时,Ti3C2Tx/PI复合材料的玻璃化转变温度提高了17℃,冲击断裂强度提高了31%。 相似文献
11.
通过改进的Hummers法制备了氧化石墨烯,用溶胶-凝胶法结合热处理工艺制备出了RGO-TiO2纳米复合材料。研究了复合材料的晶体结构、微观形貌以及RGO掺杂量对复合材料催化性能的影响。结果表明,RGO-TiO2纳米复合材料是标准的锐钛矿型,纳米TiO2颗粒均匀分布在片层状石墨烯的表面,结合良好;红外分析表明,3%RGO-TiO2纳米复合材料中石墨烯和TiO2以化学结合的形式生成了稳定的Ti-O-C键;随着RGO掺杂量的增加,RGO-TiO2纳米复合材料对苯酚的去除率先升高后降低,3%RGO-TiO2纳米复合材料在12 h时去除率最高为93.9%,其中在pH值=3的酸性条件下12 h时刻对苯酚的去除率最高达到96.1%,去除率要明显高于中性和碱性环境。 相似文献
12.
以凹凸棒土(ATP)为载体, 以Ce(NO3)3·6H2O和La(NO3)3·6H2O为原料, 以C6H12N4(HMT)为沉淀剂, 采用均相沉淀法制备了不同铈镧比的CeO2-La2O3/ATP(Ce:La=9:1~3:7, 摩尔比, 下同)复合材料。用TG-DSC、 TEM、 XRD和FTIR对所制备复合材料的微观结构和形貌进行表征, 并分别考察不同铈镧比和H2O2添加量对酸性品红模拟废水脱色降解的影响。结果表明, 当Ce:La=5:5时, CeO2-La2O3固溶体颗粒均匀分布在ATP表面, 颗粒尺寸为5~10 nm。随着铈镧摩尔比的增加, 酸性品红的降解率呈先增后减的趋势, 且当Ce:La=5:5、 H2O2为10 mL、 酸性品红浓度为100 mg/L时, 降解效果最好, 300 min后的最大降解率达82%。 相似文献
13.
利用Al-La2O3的原位反应和粉末冶金工艺制备出(Al11La3+Al2O3)/Al复合材料。结果表明,高能球磨和高温烧结促进了原位反应,使Al与La2O3充分反应并制备出致密无缺陷的材料。对其微观组织的分析表明,微米Al11La3和纳米Al2O3颗粒均匀分散于基体之中。这种复合材料的室温抗拉强度为328 MPa、延伸率为10.5%,350℃的高温抗拉强度为119 MPa、延伸率为10.2%。与传统Al-Cu-Mg-Ag和Al-Si-Cu-Mg耐热铝合金相比,本文的制备的(Al11La3+Al2O3)/Al复合材料其高温抗拉强度提高了大约20%。这种材料的室温强化机制源于Al11La3和Al 相似文献
14.
先采用机械搅拌和超声分散方式在环氧树脂中分散纳米SiO2微粒,通过扫描电镜表征断面的形貌来分析纳米SiO2分散效果,再采用力学性能测试,研究纳米SiO2对环氧树脂及其玻璃纤维增强复合材料性能的影响,结果表明,超声分散效果明显优于机械搅拌分散;纳米SiO2含量对分散效果、环氧树脂及其复合材料力学性能具有显著影响;采用超声分散的1%(质量分数)纳米SiO2改性环氧树脂浇铸体的弯曲强度比未改性的提高了21.2%,其玻璃纤维增强复合材料的弯曲和拉伸强度分别提高了9.7%和7.9%,但层间剪切强度则降低了10.6%。 相似文献
15.
利用溶胶-凝胶法,制备了TiO2和Mo@TiO2纳米粒子。采用液相沉积法,将TiO2和Mo@TiO2纳米粒子沉积到GO上面,制备了rGO/TiO2和rGO/Mo@TiO2纳米复合材料。利用SEM、XRD、XPS、FT-IR和拉曼光谱分别对TiO2、Mo@TiO2、rGO/TiO2和rGO/Mo@TiO2样品的形貌、晶型结构、离子状态以及材料的复合情况进行了研究;利用紫外-可见分光光度计测定了样品的UV-Vis吸收光谱。结果表明,制备的所有样品中的TiO2均为锐钛矿型,且GO大部分被还原成了rGO;Mo@TiO2、rGO/TiO2和rGO/Mo@TiO2样品的UV-Vis吸收光谱谱带向可见光区域内明显移动,纳米复合材料可见光利用率得到明显提升;Mo和rGO的引入,使样品的Ti2p和Mo3d光谱强度降低,XPS光谱均发生了红移,从而导致TiO2表面化学环境发生变化,特征峰向较高的结合能处偏移;SEM分析表明,rGO和TiO2之间具有良好的相互作用,在rGO表面沉积Mo@TiO2颗粒后,其形貌保持不变,形成了rGO/Mo@TiO2纳米复合材料;rGO/Mo@TiO2纳米复合材料的光催化活性最高,3 h对p-NP的降解率为84%,而TiO2、rGO/TiO2和Mo@TiO23 h对p-NP的降解率分别为26%,42%和61%。 相似文献
16.
为了使微波基板材料与Cu金属衬底的热膨胀性能匹配,对陶瓷/聚四氟乙烯(PTFE)微波复合基板材料的热膨胀性能进行了研究。采用湿法工艺制备了以SiO2和TiO2为填料的SiO2-TiO2/PTFE复合材料,研究了复合材料密度、填料粒度和填料体积分数对SiO2-TiO2/PTFE复合材料热膨胀性能的影响。结果表明,当SiO2的体积分数由0增至40%(TiO2 :34%~26%)时,SiO2-TiO2/PTFE复合材料的线膨胀系数(CTE)由50.13×10-6 K-1减小至10.03×10-6K-1。陶瓷粉体粒径和复合材料密度减小会导致CTE减小。通过ROM、Turner和Kerner模型计算CTE发现,ROM和Kerner模型与实验数据较相符,而实验值与Turner模型预测值之间的差异随PTFE含量的升高而逐渐增大。 相似文献
17.
以氧化石墨烯(GO)、1, 12-二氨基十二烷(C12H28N2)、TiO2溶胶为原料,通过预插层-离子交换-煅烧法制备TiO2/石墨烯夹层结构纳米复合材料。采用XRD、Raman、FTIR、TEM、TG、UV-Vis和PL对TiO2/石墨烯夹层结构纳米复合材料进行表征,并研究不同TiO2含量的TiO2/石墨烯纳米复合材料对环丙沙星(CIP)的光催化降解性能。在煅烧过程中,TiO2的晶化和GO的还原同时进行。根据XRD和FTIR结果推断,TiO2纳米颗粒在石墨烯层间原位生成,并通过化学键固定在石墨烯上,形成了石墨烯/TiO2/石墨烯夹层结构。当TiO2的质量分数为65.5wt%时,TiO2/石墨烯复合材料表现出对环丙沙星最佳的光催化活性,150 min光照后降解率为90%高于纯TiO2 相似文献
18.
采用反应热压烧结法制备了TaC/Ti3SiC2复合材料,借助XRD、SEM、能谱仪以及热重分析等,研究了TaC含量对TaC/Ti3SiC2复合材料的相组成、显微结构、力学性能和抗氧化性的影响。结果表明: 采用反应热压烧结法可以制备出致密的TaC/Ti3SiC2复合材料,该复合材料的主晶相为Ti3SiC2和TaTiC2,还含有少量的TiC;随着TaC含量的增加,TaC/Ti3SiC2复合材料的弯曲强度和断裂韧性呈现先增大后降低的变化趋势,当TaC含量为30wt%时,二者均达到最大值,此时弯曲强度为404 MPa,断裂韧性为4.10 MPa·m1/2;TaC的引入,使TaC/Ti3SiC2复合材料抗氧化性能明显优于Ti3SiC2材料。 相似文献
19.
为满足ITER屏蔽包层中第一壁连接组件的固体润滑要求,采用单极性脉冲磁控溅射方法,在A286镍基合金基体上制备了不同脉冲偏压及不同占空比下MoS2低摩擦系数涂层。利用X射线衍射仪、扫描电子显微镜、原位纳米力学测试系统研究涂层的微观组织、形貌及力学性能受工艺参数的影响规律;利用球-盘式摩擦磨损试验机考察涂层在大气环境下的摩擦学性能。结果表明,随偏压的增加,MoS2涂层择优取向发生了(002)向(100)转变,又恢复(002)择优取向的过程,晶粒尺寸呈先增大后减小趋势,不同脉冲偏压下,晶粒尺寸随占空比增加呈现不同的趋势;其中S-2样品具有较好的承载性能及弹性恢复能力,弹性模量为63.45 GPa,硬弹比为0.80;接触赫兹应力为1 500 MPa时,该涂层在大气环境下具有最低的平均摩擦系数(0.054)和最低的磨损率[2.11×10-5 mm3/(Nm],仅为基体的5.49%。 相似文献
20.
采用硅烷偶联剂乙烯基三甲氧基硅烷(VTMO)改性石墨烯(GE),利用溶胶-凝胶法在GE表面包覆SiO2微球,得到SiO2包覆改性石墨烯(SiO2@(VTMO-GE)),以二烯丙基双酚A(BBA)和双酚A双烯丙基醚(BBE)为活性稀释剂,4,4′-二氨基二苯甲烷型双马树脂(MBMI)为单体,制备MBMI-BBA-BBE(MBAE)树脂基体;同时,以SiO2@(VTMO-GE)为增强体,采用原位聚合法制备SiO2@(VTMO-GE)/MBAE复合材料。对VTMO-GE及包覆效果进行表征和分析,研究SiO2@(VTMO-GE)增强体与SiO2@(VTMO-GE)/MBAE复合材料性能之间的关系。结果表明:VTMO成功改性GE,且SiO2微球均匀包覆在VTMO-GE表面;SiO2@(VTMO-GE)提高了SiO2@(VTMO-GE)/MBAE复合材料性能。当SiO2@(VTMO-GE)掺杂量为2.0wt%时,SiO2@(VTMO-GE)/MBAE复合材料的冲击强度和弯曲强度达到最大,分别为23.0 kJ/m2和157.4 MPa,较聚合物基体分别提高了150%和58%;在频率为102~104 Hz范围内,介电常数较为平稳,约为70.0;介电损耗约为3.7×10?3,耐热性能随SiO2@(VTMO-GE)掺杂量的增加有所提高。SiO2@(VTMO-GE)/MBAE复合材料具有优异的综合性能,为其进一步应用奠定了基础。 相似文献