首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用不同浓度氢氧化钠(Na OH)溶液对竹纤维(BF)的表面碱预处理,再使用硅烷偶联剂3-氨基丙基三乙氧基硅烷(KH550)、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)三种不同表面改性后,与超高分子量聚乙烯(UHMWPE)粉料共混,通过模压成型工艺制备BF/UHMWPE复合材料。借助傅立叶变换红外光谱(FTIR)和热重分析(TG)研究改性前后BF的化学结构和热稳定性变化,使用摩擦磨损试验机测试三种不同表面改性BF增强UHMWPE复合材料的摩擦磨损性能,通过扫描电镜(SEM)观察改性前后BF的表面结构及复合材料的摩擦表面形貌并分析磨损机理。结果表明,10%NaOH和KH550协同改性能有效改善BF与UHMWPE的界面相容性,此时制备的复合材料干滑动摩擦因数为0. 11,磨损率较纯UHMWPE下降了46%,耐磨性显著提高,表现为轻微的疲劳磨损。  相似文献   

2.
采用硅烷偶联剂KH550,KH560和KH570对石墨烯(GNPs)进行表面改性,通过预混、熔融共混、挤出制备了聚丙烯(PP)/改性GNPs复合材料,研究了3种硅烷偶联剂对PP/GNPs复合材料性能的影响.结果表明:与PP/GNPs相比,PP/改性GNPs复合材料的力学性能明显提升,KH560改性PP/GNPs复合材料...  相似文献   

3.
采用KH550、KH560、KH570三种硅烷偶联剂对空心玻璃微珠进行处理,进而使用熔融共混法制备了环氧/玻璃微珠复合材料。运用红外分析手段证实硅烷偶联剂均已成功接枝到空心玻璃微珠表面,借助DSC-TG和万能材料试验机研究了偶联剂种类对环氧/玻璃微珠复合材料固化反应、热稳定性和力学性能的影响。对测试结果的分析表明,空心玻璃微珠的表面处理并未改变环氧与氰酸酯间的固化反应速度。经偶联剂表面改性后,制得的环氧/玻璃微珠复合材料的弯曲和压缩强度显著提高,不同硅烷偶联剂的改性效果不同,其中KH-570改性的综合效果最优。  相似文献   

4.
王鉴  马震  孟庆明 《当代化工》2016,(10):2296-2298
利用硅烷偶联剂KH570改性硅灰石,并用其填充聚丙烯制备复合材料(KW/PP)。通过比较水接触角考察了KH570用量、改性时间及改性温度对硅灰石表面改性效果的影响,并用红外光谱、扫描电镜对复合材料进行表征。结果表明:当KH570为硅灰石质量的4%,改性时间为2 h,改性温度为80℃时,改性效果最好。KW/PP复合材料的冲击强度与弯曲强度较纯PP有明显提高。  相似文献   

5.
采用十六烷基三甲基溴化铵、硅烷偶联剂KH 570以及聚乙二醇分别对石墨表面进行了有机改性,通过机械共混法制备了改性石墨/丁腈橡胶复合材料,考察了改性剂种类以及改性石墨用量对复合材料物理机械性能及摩擦性能的影响,并用扫描电子显微镜表征了石墨在橡胶基体中的分散情况及复合材料磨损表面情况。结果表明,随着改性石墨用量的增加(20份以内),复合材料的物理机械性能有所上升,摩擦系数不断下降;3种改性剂中,KH 570改性石墨所制备复合材料的物理机械性能及摩擦性能较优,当添加20份KH 570改性石墨时,其在橡胶基体中分散较好,磨损表面最为光滑、平整,复合材料的物理机械性能最佳,摩擦系数达到最低值(0.7)。  相似文献   

6.
采用熔融挤出法将热致性液晶聚合物(TLCP)与酚醛树脂(PF)熔融挤出,分别加入改良Hummers法制备的氧化石墨烯(GO)、硅烷偶联剂改性GO(KH550 GO、KH560 GO),制备了TLCP/PF/GO混杂复合材料,研究了加入GO对TLCP/PF/GO混杂复合材料的力学性能、摩擦磨损性能的影响。结果表明,硅烷偶联剂处理的GO能一定程度提高复合材料的摩擦磨损性能和力学性能,特别是TLCP/PF/KH560 GO混杂复合材料的摩擦因数稳定,在150 ℃和250 ℃下的体积磨损率分别降低了20.6 %和23.1 %,材料的冲击强度提高了18.6 %。  相似文献   

7.
以酚酞聚芳醚腈酮(PEK-CN)为基体、碳化硅(SiC)为导热填料,用硅烷偶联剂(KH550,KH560及KH570)对SiC进行表面改性,通过静电纺丝技术和高温模压法制备了PEK-CN/SiC复合材料,研究了SiC含量和不同偶联剂改性SiC对PEK-CN/SiC薄膜的微观形貌、PEK-CN/SiC复合材料的导热性能和热稳定性的影响。结果表明:偶联剂改性SiC后以及随着SiC含量的增加,PEK-CN/SiC复合材料的导热性能与热稳定性均有所改善。当经KH560表面改性的SiC质量分数为25%时,复合材料的导热系数最大,达到了0.586 W/(m·K),比PEK-CN导热系数提高了133.5%,玻璃化转变温度、失重5%及30%时的温度较PEK-CN分别提升了3.79,0.37,225.76℃。  相似文献   

8.
玄武岩纤维(BF)未经改性处理和经硅烷偶联剂(KH–550和KH–570)进行处理后,添加到高密度聚乙烯(PE–HD)基体树脂中,增强PE–HD的力学性能,用傅立叶变换红外光谱和扫描电子显微镜对硅烷偶联剂处理的BF进行表征,同时,用SEM观察BF增强PE–HD复合材料的拉伸断面。结果表明,随着未经改性处理BF添加量增加,PE–HD复合材料的拉伸强度、弯曲强度逐渐提高,当添加量达到30%时,拉伸强度达到45.5 MPa,提升79.1%;弯曲强度达到41.3 MPa,提升118.9%。经KH–550和KH–570处理的BF添加量达到20%时,PE–HD复合材料的拉伸强度均达到45 MPa以上,其后随着BF添加量继续增加,拉伸强度变化不大,而弯曲强度随BF添加量的增加逐渐增大。当BF添加量达到30%时,BF改性与否对PE–HD复合材料的力学性能的影响不大。当改性BF添加量为5%~15%时,KH–550改性的PE–HD复合材料的力学性能较KH–570改性的高;当改性BF添加量为20%,25%时,KH–570改性的PE–HD复合材料的力学性能较KH–550改性的高。  相似文献   

9.
为了研究粉煤灰在聚氯乙烯(PVC)复合材料中对其他无机填料的可替代性,比较了硅烷偶联剂(KH550,KH570)和硬脂酸(SA)表面活化粉煤灰后,在不同填充量下,对PVC复合材料力学性能的影响,并且,利用SEM对粉煤灰/PVC复合材料的微观形貌进行表征。研究结果表明,随着粉煤灰含量的增加,PVC复合材料的拉伸强度、断裂伸长率和冲击强度均降低,但是,热变形温度增大;KH550活化处理后的粉煤灰/PVC复合材料的拉伸强度和弯曲强度与SA改性的复合材料相比较好,而SA活化表面处理后的复合材料的断裂伸长率和冲击强度与硅烷偶联剂改性的复合材料相比较好。为粉煤灰资源化利用提供了新方向。  相似文献   

10.
《塑料科技》2017,(4):47-52
采用硅烷偶联剂乙烯基三乙氧硅烷(KH-151)与γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)分别对自修复微胶囊(MUF)进行表面处理改性得到MUF_1和MUF_2,并用KH-570对微胶囊进行接枝改性得到MUF_3,比较了改性剂种类、改性温度和改性方法对微胶囊结构及性能的影响,随后通过OM、SEM、FTIR、XPS、TGA等对MUF的形貌、结构及热性能进行了表征。将改性MUF应用于不饱和聚酯/碳纤维(UP/CF)复合材料中,研究了改性剂种类、改性温度及改性方法对微胶囊与树脂基体界面相容性的影响,并通过FTIR、TGA及力学性能测试考察了复合材料的结构及性能。结果表明:于60℃表面处理改性得到的MUF_1和MUF_2形状规则、表面粗糙;且接枝改性的效果优于表面处理改性。此外,对MUF进行改性可以提高MUF与UP基体之间的界面结合力。几种UP/CF/MUF复合材料中,UP/CF/MUF_3复合材料的综合力学性能最佳,与UP/CF/未改性MUF复合材料相比,其拉伸强度提高了124.5%,冲击强度提高了6.5%,弹性模量降低了20.4%,断裂伸长率降低了3.8%,自修复效率可达70.77%。  相似文献   

11.
《应用化工》2022,(4):693-696
分别用吐温-80、油酸、十二烷基苯磺酸钠、硅烷偶联3-氨丙基三乙氧基硅烷(KH550)和硅烷偶联剂γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)处理纳米二氧化硅,用沉降体积和亲油化度来对比改性效果,结果表明KH570改性效果最好,其最佳工艺条件为:KH570用量为8%,反应温度为70℃,反应时间为2 h,反应pH为5.5。对KH570改性前后的纳米粉体进行了红外光谱分析、热重分析、紫外-可见光谱分析、扫描电镜分析等表征。结果表明,硅烷偶联剂与纳米二氧化硅之间形成了化学结合,改性后的纳米SiO_2分散性提高,从而更好地应用于聚合物材料中。  相似文献   

12.
《应用化工》2017,(4):693-697
分别用吐温-80、油酸、十二烷基苯磺酸钠、硅烷偶联3-氨丙基三乙氧基硅烷(KH550)和硅烷偶联剂γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)处理纳米二氧化硅,用沉降体积和亲油化度来对比改性效果,结果表明KH570改性效果最好,其最佳工艺条件为:KH570用量为8%,反应温度为70℃,反应时间为2 h,反应pH为5.5。对KH570改性前后的纳米粉体进行了红外光谱分析、热重分析、紫外-可见光谱分析、扫描电镜分析等表征。结果表明,硅烷偶联剂与纳米二氧化硅之间形成了化学结合,改性后的纳米SiO_2分散性提高,从而更好地应用于聚合物材料中。  相似文献   

13.
硅烷偶联剂(KH550)对硫酸钙晶须(CSW)进行表面处理,运用熔融混炼挤出法制备了CSW/PBS复合材料。动态接触角、EDS和SEM研究结果显示:KH550表面处理改善了CSW填料与PBS基体之间的界面相容性。经KH550处理的CSW填料在PBS树脂中含30%时比未经处理复合材料的拉伸强度、弯曲强度分别提高22.1%和21.7%。差示扫描量热(DSC)和热重分析(TGA)结果表明:5%~20%CSW的添加量可使PBS的结晶温度增加约1~3℃,CSW/PBS复合材料的热分解温度得到提高,偶联剂对CSW表面改性使CSW/PBS复合材料的热稳定性增强。  相似文献   

14.
《广州化工》2021,49(4)
采用硅烷偶联剂(KH550)对SiO_2进行表面改性,采用溶液共混法制备了SiO_2/TPU复合材料,探究了不同改性工艺条件对SiO_2的改性效果,以及SiO_2添加量对复合材料力学性能的影响。实验结果表明,反应时间4 h、温度60℃、KH550浓度40%时对SiO_2的改性效果最佳,并制备SiO_2/TPU复合材料,通过力学性能比较,添加量为1%时复合材料的综合力学性能较好,同时能提高热稳定性。  相似文献   

15.
硅烷偶联剂对玻纤/聚丙烯复合材料的影响   总被引:2,自引:0,他引:2  
靳志森 《玻璃》2011,38(6):23-25
分别选用KH550、KH570两种硅烷偶联剂处理无碱无捻粗纱,采用挤出、注塑成型技术制备玻纤增强聚丙烯复合材料,对复合材料进行了分析和研究。结果表明:硅烷偶联剂具有提高GF/PP复合材料性能的作用。SEM显示KH570处理GF与PP基体之间形成了良好的界面,界面层起到很好的应力传递作用,达到良好的增强效果。  相似文献   

16.
使用硅烷偶联剂γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)改性生物质废弃物玉米秸秆粉(CP),以期改善其与聚合物的相容性,并将其引入等规聚丁烯-1(iPB)基体中制备iPB/CP复合材料,考察了改性前后复合材料的力学性能、热变形温度及微观形貌.结果表明,KH570成功的接枝到CP表面,经过KH570改性后的复合材料...  相似文献   

17.
采用KH570对介孔二氧化硅SBA-15进行表面处理,通过原位聚合方法合成SBA-15/不饱和聚酯(UP)复合树脂,后再通过共混、辊炼、模压成型制备了SBA-15/UP复合材料。研究了加入SBA-15对SBA-15/UP复合材料的摩擦磨损性能、硬度、动态力学性能的影响,通过扫描电子显微镜(SEM)对复合材料的磨损表面形貌进行观察。结果表明,经改性后的SBA-15加入使复合材料的体积磨损率降低了26%,玻璃化温度提高了16℃。  相似文献   

18.
采用碱/硅烷偶联剂(KH550)和碱/KH550/二苯甲基二异氰酸酯(MDI)对竹纤维进行表面改性,并制备了环氧树脂/竹纤维复合材料,研究了两种表面改性方法对复合材料的力学性能及热稳定性的影响.结果表明,竹纤维经改性后,复合材料的拉伸强度显著提升,两种改性方法制备的复合材料在拉伸强度上无较大区别,但与碱/KH550改性...  相似文献   

19.
采用硅烷偶联剂KH550改性处理甜高粱渣(SSS),制备高密度聚乙烯/改性甜高粱渣(HDPE/SSS)复合材料。研究KH550质量分数对SSS表面官能团及微观形貌的影响,并对HDPE/SSS复合材料的微观形貌、静态力学性能、蠕变行为、应力松弛行为及表面亲/疏水性进行系统的探究。结果表明:随着KH550质量分数的增加,复合材料的静态力学强度(拉伸、弯曲和冲击)均呈现先上升后下降的趋势;KH550有效提高复合材料的热稳定性、抗蠕变性能和抗应力松弛性能;复合材料的表面疏水性随KH550用量的增加而增强。当KH550质量分数为3%时,复合材料的界面结合情况较好,其静态力学强度、抗蠕变性能和抗应力松弛最佳。  相似文献   

20.
焦晓岚  邓鑫  郑玲  周依莎 《塑料》2023,(4):32-36
采用二苯甲基二异氰酸酯(MDI)和硅烷偶联剂(KH550)对碳纤维进行表面改性,将改性后的碳纤维(MDI/KH550-CFs)与环氧树脂(EP)复合,制备了不同碳纤维添含量的环氧树脂基复合材料,通过扫描电镜、拉伸测试、抗冲测试、磨损测试等研究改性碳纤维含量对环氧树脂基复合材料力学性能的影响。扫描电镜结果表明,采用MDI和KH550改性后的碳纤维与环氧树脂具有较好的界面粘结性能;力学及摩擦磨损性能测试结果显示,加入碳纤维有利于改善材料的拉伸性能及耐磨性能,能够延长材料的使用寿命,并且不影响材料的抗冲击性能。当MDI/KH550-CFs含量为4%时,拉伸强度为25.862 4 MPa,与纯环氧树脂相比增强了62.4%;当其含量为2%时,最低磨损率为0.7×10-4mm3/(N·m)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号