首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对钒渣在NaOH低温亚熔盐体系中铬无法溶出问题,提出添加活性炭增加介质氧含量强化铬氧化溶出方法,并考察活性炭种类、活性炭添加量、活性炭粒度、温度对钒、铬溶出率的影响。结果表明,在NaOH亚熔盐体系中添加活性炭可有效促进钒和铬的溶出,活性炭种类和温度是最重要的影响因素;在反应温度215℃、碱与矿质量比6:1、通氧量1 L/min、搅拌速度900 r/min、椰壳活性炭添加量10%的条件下,反应进行600 min后钒、铬溶出率分别达到97%和90%。动力学分析表明,添加活性炭后钒渣的氧化分解受界面化学反应控制,钒、铬尖晶石分解反应的表观活化能分别为54.79和411.15 kJ/mol;活性炭起物理吸附氧气作用。  相似文献   

2.
通过添加CuO催化剂来提高铬铁矿在KOH亚熔盐介质中的浸出率。研究反应体系温度、碱矿质量比,铜矿质量比和气体流速对铬浸出的影响。结果表明:CuO对提高铬铁矿在KOH亚熔盐介子的浸出率起着十分重要的作用。在反应温度为230°C、碱矿质量比为6:1、搅拌转速为700 r/min、气体流速为1 L/min、反应时间为6h的条件下铬的转化率在添加CuO时为98%,而未添加CuO时,铬的转化率仅为60.8%。动力学计算结果表明,添加CuO后在反应温度高于230°C时,反应速度控制步骤为表面化学反应控制,反应活化能为15.79 k J/mol;未添加CuO时,反应速度控制步骤为外扩散控制,反应活化能为38.01 k J/mol。  相似文献   

3.
反应挤出法碱分解黑钨矿   总被引:1,自引:0,他引:1  
针对目前黑钨矿碱法分解工艺中存在的反应温度高、生产效率低等问题,开发了一种黑钨矿碱分解新工艺,以双螺杆挤出机为反应器,采用反应挤出法对高黏度黑钨矿的碱分解过程进行了研究,系统考察浸出时间、温度、螺杆转速和碱用量对钨矿浸出效果的影响。在矿水质量比为2.67:1、碱用量为理论量的1.5倍、温度为120℃,螺杆转速为180 r/min和反应时间为2.5 h的条件下,浸出渣中WO3的含量为2.54%,钨矿的浸出率达99.13%。  相似文献   

4.
本文针对目前钒铬渣中钒铬组元难以实现高效环保分离的研究现状,以钒铬渣为研究对象,碳酸锰为焙烧添加剂,通过钒铬渣碳酸锰焙烧−酸浸工艺实现了钒铬的高效分离。通过正交试验设计研究碳酸锰加入量、焙烧温度、恒温时间和升温速率对钒铬浸出行为的影响。结果表明:焙烧过程中钒尖晶石与碳酸锰的分解产物Mn_(2)O_(3)结合生成酸溶性的焦钒酸锰Mn_(2)V_(2)O_(7),随后在浸出过程中进入液相。而铬与铁结合生成稳定的固溶体(Fe_(0.6)Cr_(0.4))_(2)O_(3),浸出后转移入渣相。当碳酸锰加入量(以n(MnO)/n(V_(2)O_(5))计)为2.0,焙烧温度为850℃,恒温时间为2 h,升温速率为5℃/min时,钒浸出率达到最大值89.37%,铬浸出率仅为0.10%,实现钒的高效提取与钒铬分离。  相似文献   

5.
以钒渣亚熔盐法钒铬共提工艺所得到的中间产品钒酸钙为研究对象,针对钒酸钙后续产品转化问题,提出钒酸钙碳化铵化生产钒氧化物的工艺路线;研究NH_4HCO_3转化溶出钒的工艺条件,考察是否通入CO_2、NH_4HCO_3的添加量、反应温度、不同液固比以及反应时间等对钒酸钙转化溶出效果的影响。结果表明:钒酸钙碳化铵化反应的最佳条件为反应温度75℃,液固比20:1,通入CO_2,且流速1.5 L/min,铵钒摩尔比1.0,反应时间1h,此条件下钒酸钙中钒转化率为97.35%。  相似文献   

6.
钒钛磁铁矿提钒尾渣浸取钒   总被引:1,自引:0,他引:1  
采用硫酸氢氟酸次氯酸钠组合浸出体系浸取钒钛磁铁矿提钒尾渣中的钒,研究浸出过程中试剂浓度、浸出液固比、浸出温度、浸出时间、物料粒度对钒浸出率的影响。结果表明:钒的浸出率随试剂浓度、液固比、温度和时间的升高而增大;当矿物粒度小于0.20 mm时,钒浸出率有随矿物粒度变小而减小的趋势。在物料粒度0.15~0.25 mm、初始硫酸浓度150 g/L、初始氢氟酸浓度30 g/L、次氯酸钠加入量为矿量1.5%、矿浆液固比6:1、浸出温度90℃、浸出时间6 h、搅拌速度500 r/min的条件下,钒的浸出率可达85%以上。  相似文献   

7.
在实验室条件下对熔融态钒渣直接氧化钙化提钒新工艺进行研究。在反应过程中利用纯氧氧化,CaO作为添加剂,硫酸浸出熟料。采用XRD、XPS、SEM及EDS等手段对钒渣熟料进行分析,考察不同CaO/V2O5质量比与硫酸浓度对熟料中钒浸出的影响,并与现行焙烧工艺在能耗方面进行对比。结果表明:钒渣熟料中形成了钒的富集相,钒渣的氧化钙化产物主要为CaV2O5和Ca2V2O7,并对钒酸钙的形成机理进行了阐释;XRD和XPS分析得出熔渣中钒的氧化反应在供氧充足的情况下存在一定限制,CaO的增加能促进五价钒在熔渣中的稳定;在优化的实验条件下(CaO/V2O5质量比0.6,粒度120~150μm,浸出时间2 h,浸出温度90°C,液固比5:1 mL/g,H2SO4浓度20%,搅拌强度500 r/min),钒的浸出率能达到90%;能耗计算得到每处理1000 kg钒渣,利用新工艺可以节约能量1.85×106 kJ。实验与计算结果验证新工艺是一种节能减排的提钒手段。  相似文献   

8.
提出两段氧化—碱浸—酸浸工艺来回收改性含钛高炉渣中的铁、钒和钛.较佳的提铁实验条件为一段氧化时间40 s和保温时间8 min,铁的回收率为89.93%.较佳的提钒实验条件为总氧化时间126 s、NaOH浓度4.0 mol/L、浸出温度95℃、浸出时间90 min和碱浸循环次数4,钒的浸出率为92.13%.较佳的提钛实验...  相似文献   

9.
活性炭强化亚熔盐介质中钒渣分解效果显著,添加10%(质量分数)活性炭即可实现215℃下铬的溶出率由0提高至近85%。以活性炭强化氧化亚熔盐介质中钒渣分解作用机制为重点展开研究。结果表明:活性炭的强化氧化作用主要与其吸附性能及活性氧(ROS)催化氧化性能相关。通过对活性炭表面ROS含量的测定,发现超氧自由基(O_2~-)的存在和生成是活性炭催化氧化亚熔盐介质中矿物分解的主因,且O_2~-随NOH浓度的升高含量大幅增加。活性炭表面的超氧根一方面作为催化剂促进反应的发生,另一方面可附着于活性炭巨大的比表面上和发达的孔隙结构中,通过活性炭与钒渣在液相中的接触对矿物进行氧化分解。  相似文献   

10.
根据带元器件废弃电路板多金属料成分特点,采用梯级碱溶处理工艺,实现多金属料中有价金属选择性分离。该工艺由低碱浸出和高碱氧化浸出两级组成。第一段主要实现Al的选择性分离,最佳工艺条件:NaOH溶液浓度1.25 mol/L,与多金属料液固比为10:1,浸出温度30℃,浸出时间30 min;第二段主要实现Zn、Pb、Sn与Cu的选择性分离,最佳工艺条件:初始NaOH溶液浓度5mol/L,体系溶液(80%的碱溶液+20%的H_2O_2溶液)与低碱浸出渣液固比10:1,H2O2溶液滴加速度0.4 m L/min,浸出温度50℃,浸出时间60 min。在此优化工艺条件下,金属的浸出率依次为Al 91.25%,Zn 83.65%,Pb 79.26%,Sn 98.24%;此外,98%以上的Cu和100%的贵金属在高碱浸出渣中富集。  相似文献   

11.
针对含钒钢渣存在的钙和铁含量高、钒含量低等难以利用的问题,本文研究了含钒钢渣选择性预处理工艺,通过降低含钒钢渣的钙钒比(CaO/V_2O_5比),获得可利用的钒原料。通过分析含钒钢渣在盐酸体系下的分解行为,考察了酸度、反应温度、粒度及液固比等因素对溶出过程的影响,并探讨了反应机理。结果表明:含钒钢渣最优预处理工艺条件为初始酸度2 mol/L、反应温度40℃、液固比8:1、含钒钢渣粒度74~124μm、反应时间10 min。在此最优条件下,CaO含量(质量分数)由41.09%降至14.28%,CaO/V_2O_5比由16降至3,MnO_2、MgO、FeO、SiO_2的溶出率分别达到39%、47%、39%和55%。随着反应的进行,游离氧化钙、氧化铁、铁酸钙等矿相破坏,富集钒的硅酸二钙和硅酸三钙等矿相无变化。经碳酸钠浸出后,钒的提取率由80%提高到85%以上。  相似文献   

12.
研究以高碳铬铁为原料在碳酸钾的存在下经氧化焙烧制备铬酸钾的反应过程。考察反应温度、反应时间和碱矿比(碳酸钾与高碳铬铁的摩尔比)对氧化焙烧过程的影响,并讨论反应的热力学与动力学。结果表明,反应温度和反应时间对高碳铬铁的氧化焙烧过程影响较大;反应机理随反应温度发生改变。采用两段焙烧法可以获得较好的反应效果,碳素铬铁中铬的转化率达到97.06%;此工艺产生的铬渣量极少,仅为所得产品质量的1/3左右,且铬渣中Fe含量高达55.04%,可用于碳还原法生产海绵铁,实现铬渣的彻底解毒和零排放。  相似文献   

13.
采用硫酸分解焙烧金精矿,金从黄铁矿中解离的同时金得到了富集,可采用氯化铁溶液非氰浸出金。研究了硫酸浓度及过量系数、分解温度对铁分解率的影响,优化工艺条件为,焙烧温度180 ℃,反应时间90 min,硫酸过量系数1.2,在此条件下,铁分解率为92.14%,金含量从原来的51.7 g/t提高到106.1 g/t;研究了反应温度、液固比对氯化铁溶液浸出硫酸浸出渣中金的影响,优化浸出条件为,液固比1.5,80 ℃浸出90 min,在此条件下,金浸出率96.8%。  相似文献   

14.
响应面优化蔗渣焙烧还原低品位软锰矿的工艺(英文)   总被引:1,自引:0,他引:1  
采用基于统计的优化策略优化了无氧条件下蔗渣焙烧还原低品位软锰矿的工艺。用中心组合设计收集实验数据,用二次模型表示锰浸出率与渣矿比(蔗渣与锰矿质量比)、焙烧温度、焙烧时间的函数关系,用统计分析(ANOVA)研究变量及变量的相互作用对浸出过程的影响。结果表明,渣矿比和焙烧温度对浸出过程的影响比焙烧时间的大,渣矿比和焙烧温度的线性项、二次项及其交互作用影响显著,而焙烧时间的影响却较小。利用所得的二次模型可得最佳工艺参数:渣矿比0.9:10、焙烧温度450°C、焙烧时间30min。在优化条件下,锰浸出率的预测值为98.1%,实验值为98.2%.  相似文献   

15.
石煤钒矿硫酸活化常压浸出提钒工艺   总被引:2,自引:0,他引:2  
研究石煤钒矿的硫酸活化提钒方法。分别考察矿石粒度、硫酸浓度、活化剂用量、催化剂用量、反应温度、反应时间和浸出液固比等因素对钒浸出率的影响。结果表明:石煤提钒的优化条件为矿石粒度小于74μm的占80%、硫酸浓度150 g/L、活化剂CaF2用量(相对于矿石)60 kg/t、催化剂R用量20 g/L、反应温度90℃、反应时间6 h、液固比(体积/质量,mL/g)2:1,在此优化条件下,钒浸出率可达94%以上;在优化条件下,采用两段逆流浸出,可有效减少活化剂CaF2以及浸出剂硫酸的消耗量;经过两段逆流浸出萃取反萃氧化水解工艺,全流程钒资源总回收率可达86.9%;V2O5产品纯度高于99.5%。  相似文献   

16.
对某铂钯精矿进行了工艺矿物学分析,确定铂钯矿物主要为碲铂钯矿、硫铂钯矿、砷铂钯矿、锡铂钯矿等矿物,铂钯元素在铂钯矿物中分布均匀。采用直接氯化浸出工艺浸出该矿中的铂钯,考察盐酸浓度、液固比、反应时间、反应温度、氯酸钠用量、氯酸钠滴加速率对铂钯浸出率的影响,确定最佳工艺参数,并对浸出渣进行物相分析,优化浸出方案。结果表明:在最佳条件为盐酸浓度4 mol/L、液固比4:1、反应温度95℃、反应时间9 h,氯酸钠溶液(625 g/L)用量与精矿的液固比为3.2:1(80 mL:25 g),滴加速度为12 mL/h;在最优条件下,铂、钯浸出率分别达到92.83%和99.7%。浸出渣物相分析显示,未能被浸出的铂被滑石、钠长石及金红石等矿物完全或部分包裹,导致铂浸出困难。  相似文献   

17.
对Nb2O5在KOH亚熔盐体系中的溶解行为进行了研究,通过正交实验和因素实验分析了KOH浓度、反应温度、反应时间、搅拌速率和碱矿比等因素对Nb2O5在KOH亚熔盐体系中溶解行为的影响.结果表明:反应温度和KOH浓度是最重要的影响因素; 在一定温度下,KOH浓度越高越有利于得到可溶性的六铌酸钾; 而在一定KOH浓度下,温度越高越容易得到不溶性的铌酸盐沉淀.不溶性沉淀经ICP-AES和XRD分析证明为偏铌酸钾(KNbO3).  相似文献   

18.
对锆英砂在氢氧化钠亚熔盐中的分解动力学进行研究,考察反应温度、反应时间、Na OH含量、搅拌速度、碱矿比等因素对锆英砂分解率的影响。研究结果表明:锆英砂的分解率随反应温度、反应时间和NaOH含量的增加而增加。分解过程符合缩核模型,界面化学反应为控制步骤,表观活化能为77.98k J/mol,最佳实验条件下的转化率高于99%,分解产物为硅锆酸钠(Na_2ZrSiO_5)。  相似文献   

19.
以高砷烟尘碱浸脱砷渣为研究对象,采用硫化钠浸出-空气氧化法选择性提取锑并制备焦锑酸钠产品。结果表明:在硫化钠浓度为100 g/L、氢氧化钠浓度为40 g/L、反应时间为3.0 h、液固质量比为5:1、反应温度为90℃、搅拌速度为400 r/min条件下,锑的浸出率为84.81%;在空气流量为1.5 L/min、反应时间为9 h、反应温度为60℃、搅拌速度为300 r/min条件下,锑浸出液中锑沉淀率为98.51%;氧化沉淀产物经盐酸溶解、水解、转化后得到焦锑酸钠产品。硫化钠浸出-空气氧化工艺可以有效地分离提取高砷烟尘碱浸渣中的锑,并制备得到焦锑酸钠产品,实验过程简单、清洁,生产成本低,具有产业化前景。  相似文献   

20.
研究了以钛白废酸直接加压浸出转炉钒渣提钒的工艺。矿物学研究表明:钒、钛、铁、锰、铬等金属元素形成的尖晶石是转炉钒渣的主要物相。绘制了V-Fe-H2O、V-Ti-H2O、V-Mn-H2O、V-Cr-H2O等三元系150 ℃高温电位-pH图,明确了酸浸提钒过程的热力学:在低酸度浸出提钒条件下,可溶性离子Fe2+、Fe3+、Mn2+、Cr2+、Cr3+等的热力学稳定与可溶性含钒离子的热力学稳定区重合,酸浸过程中与钒共同进入浸出液中。钛白废酸酸浸正交试验结果表明:温度和初始酸浓度是影响酸浸过程的主要因素。基于正交试验结果,进一步考察温度对浸出过程的影响,结果表明,随着酸浸温度由100 ℃升高到160 ℃的过程中,浸出渣中的钛有效富集含量在4.56%至12.0%之间变化,其他离子主要赋存于浸出液中。在较优条件下:温度 140 ℃,液固比10:1,初始酸浓度200 g·L-1,搅拌转速500 r/min,酸浸时间90 min,钒的浸出率为 96.85%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号