首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The in vitro response of primary human osteoblast-like (HOB) cells to a novel hydroxyapatite (HA) coated titanium substrate, produced by a low temperature electrochemical method, was compared to three different titanium surfaces: as-machined, Al2O3-blasted, plasma-sprayed with titanium particles. HOB cells were cultured on different surfaces for 3, 7 and 14 days at 37 °C. The cell morphology was assessed using scanning electron microscopy (SEM). Cell growth and proliferation were assessed by the measurement of total cellular DNA and tritiated thymidine incorporation. Measurement of alkaline phosphatase (ALP) production was used as an indicator of the phenotype of the cultured HOB cells. After three days incubation, the electrochemically coated HA surface produced the highest level of cell proliferation, and the Al2O3-blasted surface the lowest. Interestingly, as the incubation time was increased to 7 days all surfaces produced a large drop in tritiated thymidine incorporation apart from the Al2O3-blasted surface, which showed a small increase. Cells cultured on all four surfaces showed an increased expression of ALP with increased incubation time, although there was not a statistically significant difference between surfaces at each time point. Typical osteoblast morphology was observed for cells cultured on all samples. The HA coated sample showed evidence of a deposited phase after three days of incubation, which was not observed on any other surface. Cells incubated on the HA coated substrate appeared to exhibit the highest number of cell processes attaching to the surface, which was indicative of optimal cell attachment. The crystalline HA coating, produced by a low temperature route, appeared to result in a more bioactive surface on the c.p. Ti substrate than was observed for the other three different Ti surfaces.  相似文献   

3.
Rough implant surfaces have shown improved osseointegration rates. In a majority of dental implants, the microrough surfaces are obtained by grit blasting and/or acid-etching. The aim of this contribution was to evaluate the effects of acid-etching, after the grit-blasted treatment in titanium dental implants, on surface wettability, surface energy, osteoblast responses and its osseointegration behavior. Four surfaces were studied: as-machined, acid-etched, micro-rough by grit-blasting and the combination grit-blasted surface with acid-etched. The surfaces with increasing roughness show more osteoblastic adhered cells. This effect was most pronounced on samples blasted and blasted with acid-etching. The roughness obtained by grit-blasting is the main factor in comparison with the acid etching treatment in the biological response. These results were confirmed in vivo tests and histological analysis. The results demonstrated that the combination of the grit-blasted and acid-etched accelerated lightly bone regeneration at the different periods of implantation in comparison with the grit-blasted implants.  相似文献   

4.
Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3 × 1016 ions/cm2 was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity.  相似文献   

5.
Machined dental implants of titanium were blasted with Al2O3 powder of 250 μm particle size. The surface was irradiated in vacuum with a Nd-glass pulsed laser at 1–3 J pulse energies. The morphology of these surfaces was investigated by optical and scanning electron microscopy. The low intensity laser treatment resulted in some new irregularities but we can observe the blasted elements and caves from the original blasted surface too. The blasted elements were washed out and a new surface morphology was induced by the high intensity laser treatment.The osseointegration was determined by measuring the removal torque in the rabbit experiments. The results were referred to the as machined surface. The blasting slightly increased the removal torque. The laser irradiation increased the removal torque significantly, more by a factor of 1.5 compared to the reference at high laser intensity. This shows the influence of the surface morphology on the osseointegration.The combination of the blasting with the laser irradiation is considered a method to determine the morphology optimal for the osseointegration because the pulsed laser irradiation caused modifications of the micrometer sized surface elements and decreases possible surface contamination.  相似文献   

6.
This study was to evaluate wettability, cell response, and osseointegration of nanotubular titanium (Ti) surface by anodic oxidation. Commercially pure Ti discs were treated by polishing, sandblasting, and anodizing. These surfaces were characterized by scanning electron microscopy and contact angle measurement. MC3T3-E1 osteoblast cell was used to evaluate cell response in vitro. The cell morphology, cell viability, and alkaline phosphatase (ALP) specific activity were assessed. The Ti implants of 2.0 mm diameter and 5.0 mm long treated by anodizing and sandblasting/anodizing were inserted into the tibia of rats. After 3 weeks, the histology of the Ti–bone interface was examined. SEM observations showed that the anodizing and sandblasting/anodizing created the nanotubular surface and graded nanotubular-micro-roughened surfaces, respectively. The anodizing and sandblasting/anodizing significantly improved the hydrophilicity of Ti. The significant greatest cell spreading and ALP specific activity were observed on the graded nanotubular-micro-roughened surfaces treated by sandblasting/anodizing. The in vivo study shows that newly formed bone was intimately in contact with the nanotubular surfaces without adverse immune response. This study has suggested that the graded nanotubular-micro-roughened surface of Ti treated with sandblasting/anodizing is very promising in implantology due to improved hydrophilicity, favorable cell response, and excellent osseointegration.  相似文献   

7.
8.
The combination of shot blasting (SB) and micro-arc oxidation (or anodic oxidation—AO) in titanium surfaces was shown to provide enhanced conditions for cell differentiation and osseointegration than those provided by SB or AO alone. This study associated both methods aiming to attain titania layers on Ti with adequate tribo-mechanical features for bone implants. SB was performed using alumina particles, and titania layers were grown by AO using a CaP-based electrolyte. Mechanical properties and scratch resistance were characterized at nanoscale by instrumented indentation and nanoscratch, and correlated with morphological and microstructural changes (XRD, SEM, EDS, AFM, and profilometry). Analytical methods were employed to correct roughness and substrate effects on the indentation results. CaP-containing TiO2 layers were produced on AO and SB + AO. The latter presented small pore size and inhomogeneous layer thickness and Ca/P ratios, caused by the non-uniform surface straining by SB that affects the oxide growth kinetics in the electrochemical process. Elastic modulus of SB + AO layer (37 GPa) were lower than the AO one (45 GPa); both of them were smaller than bulk Ti (130 GPa) and close to bone values. The hardness profiles of AO and SB + AO were similar to the substrate ones. Because of the improved load bearing capacity and unique layer features, the critical load to remove the SB + AO titania coating in scratch tests was three times as much or higher than in AO. Results indicate improved mechanical biocompatibility and tribological strength of anodic titania layers grown on sand blasted Ti surfaces.  相似文献   

9.
Three-dimensional-printed (3D-P) titanium implants display many advantages, such as design flexibility, higher efficiency, the capability to easily construct complex or customized structures, etc., and is believed to potentially replace traditional implants. However, the biological performance of the 3D-P titanium surface has not been investigated systematically. Herein, we analyzed the surface characteristics of 3D-P Ti6Al4V implants and evaluated the biological responses of bone marrow derived mesenchymal stromal cells (BMSCs) to the 3D-P surface in vitro. Moreover, after implantation into the rat femoral condyle for 3 and 6 weeks, the osseointegration performance was evaluated. The results showed the 3D-P Ti6Al4V implant presented distinct fluctuant macroscale rough surface and relatively better hydrophilicity which enhanced the adhesion, proliferation, osteogenic differentiation and angiogenetic factor expression of BMSCs. Moreover, the in vivo osseointegration performance was also better than that of the control group at the early stage. The present study suggested the 3D-P titanium alloy is a promising candidate to be used as implant material.  相似文献   

10.
The surface properties of titanium alloy implants for improved osseointegration in orthopaedic and dental surgery have been modified by many technologies. Hydroxyapatite coatings with a facultative integration of growth factors deposited by plasma spraying showed improved osseointegration. Our approach in order to enhance osseointegration was carried out by a surface modification method of titanium alloy implants called plasma chemical oxidation (PCO). PCO is an electrochemical procedure that converts the nm‐thin natural occurring titanium‐oxide layer on an implant to a 5 µm thick ceramic coating (TiOB‐surface). Bioactive TiOB‐surfaces have a porous microstructure and were loaded with calcium and phosphorous, while bioinert TiOB‐surfaces with less calcium and phosphorous loadings are smooth. A rat tibial model with bilateral placement of titanium alloy implants was employed to analyze the bone response to TiOB‐surfaces in vivo. 64 rats were randomly assigned to four groups of implants: (i) pure titanium alloy (control), ii) titanium alloy, type III anodization, (iii) bioinert TiOB‐surface, and (iv) bioactive TiOB‐surface. Mechanical fixation was evaluated by pull out tests at 3 and 8 weeks. The bioactive TiOB‐surface showed significantly increased shear strength at 8 weeks compared to all other groups.  相似文献   

11.
Highly rough and porous commercially pure titanium coatings have been directly produced for first time by the cold spray technology, which is a promising technology in front of the vacuum plasma spray for oxygen sensitive materials. The wettability properties as well as the biocompatibility evaluation have been compared to a simply sand blasted Ti6Al4V alloy substrate. Surface topographies were analysed using confocal microscopy. Next, osteoblast morphology (Phalloidin staining), proliferation (MTS assay), and differentiation (alkaline phosphatase activity) were examined along 1, 7 and 14 days of cell culture on the different surfaces. Finally, mineralization by alizarin red staining was quantified at 28 days of cell culture. The contact angle values showed an increased hydrophilic behaviour on the as-sprayed surface with a good correlation to the biological response. A higher cell viability, proliferation and differentiation were obtained for highly rough commercial pure titanium coatings in comparison with sand blasted substrates. Cell morphology was similar in all coatings tested; at 14 days both samples showed extended filopodia. A higher amount of calcium-rich deposits was detected on highly rough surfaces. In summary, in-vitro results showed an increase of biological properties when surface roughness increases.  相似文献   

12.
The objective of this study was to evaluate the proliferation and osteogenic potential of bone-marrow derived osteoblast-like cells on fiber-reinforced composite (FRC) substrates with and without bioactive glass surface modification. Three FRC materials were fabricated for the study: (a) grit-blasted FRC, (b) grit-blasted FRC with bidirectional net reinforcement and (c) FRC with bioactive glass (BAG) coating. Rat bone-marrow derived osteoblast-like cells were harvested and cultured on experimental material plates and on cp. titanium plates (control) for 21 days. The materials' surfaces were characterized by roughness testing and scanning electron microscopy. Cell growth and differentiation kinetics were subsequently investigated by evaluating proliferation, alkaline phosphatase (ALP) activity, osteocalcin (OC) and bone sialoprotein (BSP) production. On day 14, the cell proliferation was significantly lower (P < 0.05) on FRC-BAG than on titanium and FRC. The proliferation on the other three materials was equal throughout the experiment. The maximal ALP activities on FRC, FRC-Net, and titanium were observed on day 21, whereas FRC-BAG had already reached the maximal level on day 14. Expression of osteoblastic markers (OC, BSP) indicates that the fastest osteogenic differentiation takes place on FRC after 7 days. In contrast, a slower differentiation process was observed on titanium than on any other tested material (P < 0.015) at 21 days, as was confirmed by increased mRNA expression of OC and BSP. It can be concluded that the proliferation and maturation of osteoblast-like cells on FRC appears to be comparable to titanium. Presence of BAG enhances cell maturation.  相似文献   

13.
Microporous oxide layers allowing fast deposition of calcium phosphate layers (CPLs) were formed on commercially pure titanium (c.p.Ti) after the application of a newly developed two-step chemical treatment. The micropores were of submicrometre size. The two-step treatment was carried out by etching c.p.Ti samples with HCl and H2SO4 first and then treating them in boiling 0.2 N NaOH solution at 140 °C for 5 h. Conformal CPLs, about 20 m thick, were deposited on the two-step treated c.p.Ti surface by means of a two-day immersion in an in vitro supersaturated calcification solution. The CPL was characterized to be mainly composed of two sublayers, i.e. an outside loose octacalcium phosphate crystal sublayer and an inside dense carbonated apatite sublayer. A scratching test indicated that the apatite sublayer was strongly bonded to the c.p.Ti substrate. Moreover, it was observed that the untreated or single-step treated c.p.Ti surfaces are not only morphologically different from one another but significantly different from the two-step treated one, in that no precipitation was observed on them up to 14 d immersion in the same calcification solution. It is indicated that the two-step chemical treatment is a simple and easily controllable method to prepare bioactive titanium surfaces and subsequently to induce the rapid precipitation of conformal and adherent CPL from in vitro supersaturated calcification solutions. © 1998 Chapman & Hall  相似文献   

14.
In the biomedical field, modification of titanium surfaces to improve the osteoinductive and antibacterial behavior is widely investigated. This functionalization can be further ameliorated by providing a porous coating with high loading capacity for bioactive materials and drug delivery carriers at the implant surface. In this work, a new powder metallurgical processing route used to deposit such porous pure titanium coatings on Ti based substrates is presented. The coatings were prepared by electrophoretic deposition (EPD) of TiH2 powder suspensions followed by dehydrogenation and sintering in vacuum. The use of hydrides allowed to lower the sintering temperature below that of the α–β transition of the Ti6Al4V substrate. Measurement of the tensile bond strength confirmed a strong adhesion of the porous coating. Deposition of powders with different grain sizes resulted in porous titanium coatings with varying thickness, pore morphology, and surface roughness. The possibility to extend this coating technique to complex shaped implants is highlighted.  相似文献   

15.
The purpose of this study is the development of bioactive functionalized titanium surface by immobilizing hyaluronic acid (HA) and carboxymethyl chitosan (CMCH) onto -NH2 functionalized titanium surfaces to improve biological and chemical properties of titanium. The in vitro biological evaluation showed that introducing the CMCH and HA to the Ti/NH2 enhanced initial cell proliferation compared to untreated Ti surface.  相似文献   

16.
This study describes biomimetic calcium phosphate (Ca-P) coatings formation under simulated physiological conditions on Ti surfaces that go through nitric acid treatment (NT). In the present study, nitric acid treatment was used to treat Ti specimens so that Ti specimens could have the ability to induce Ca-P formation. After careful selection of the NT parameters, Ca-P coatings success fully formed on the nitric-acid-treated Ti surfaces in a supersaturated calcium phosphate solution (SCPS) and in the simulated body fluid (SBF). Before NT, the Ti specimen should go through mixed acid etching to increase its surface roughness because rough surfaces lead to good adherence between coatings and substrates. Amorphous Ca-P coatings were formed on the Ti surfaces by immersing the NT Ti specimens in SBF, while octacalcium phosphate (OCP) coatings were formed in the SCPS after 3 days of immersion. The study firstly proved that nitric acid treatment is not only just for surface passivation but also is another bioactive treatment as an alternative to the alkaline treatment and two-step method. The experimental results also confirmed that the conventional nitric acid treatment of a titanium surface does not increase the titanium oxide on the Ti surfaces. However, extending the nitric acid treatment time and enhancing the nitric acid treatment temperature help to increase Ti surface ability of Ca-P induction in simulated physiological environments. Ti specimens that had 600 min of NT at 60 °C had the best Ca-P induction ability under biomimetic conditions.  相似文献   

17.
Model to analyse the bone on‐growth on bioactive coated implant surfaces Especially on the field of bone regeneration, transient and permanent implants are an important method of therapy in the Orthopaedic Surgery. In this context, bioactive surfaces on metallic implants provide an improved contact to the surrounding bone. The goal of our study was to establish an in‐vitro test system to evaluate the on‐growth of bone‐derived cells on different surface coatings. Therefore, we invented a special kind of clamps made of commercially‐pure (c‐p) titanium and blasted with hydroxyapatite particles followed by electrochemically coating with calcium phosphate (BONIT®‐HA, BONIT®). Definite pieces of human cancellous bone were attached to these clamps, inserted onto tissue culture plates and cultivated in DMEM for ten days. Finally, the contact area between human cancellous bone and the implant surface was analyzed and the spreading of osteoblast‐like cells evaluated by scanning electron microscopy (SEM). A well‐spread morphology of bone cells was observed on the implant surfaces coated with calcium phosphate (CaP). In comparison the clamps without CaP coatings showed only a marginal growth of bone cells on the clamp surface. The presented newly in‐vitro test setup using titanium clamps coated with bioactive layers attached to human cancellous bone represents a well‐functioning model for qualitative evaluation of bone on‐growth.  相似文献   

18.
The aim of the present study was to compare the nucleating behaviour on four types of bioactive surfaces by using the simulated body fluid (SBF) model with the presence albumin. Titanium discs were blasted (B) and then prepared by alkali and heat treatment (AH), anodic oxidation (AO), fluoridation (F), or hydroxyapatite coating (HA). The discs were immersed in SBF with 4.5 mg/ml albumin for 3 days, 1, 2, 3 and 4 weeks and analysed with scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX) and X-ray photoelectron spectroscopy (XPS). Topographic surface characterisation was performed with a contact stylus profilometer. The results demonstrated that the bioactive surfaces initiated an enhanced calcium phosphate (CaP) formation and a more rapid increase of protein content was present on the bioactive surfaces compared to the blasted control surface. The observation was present on all bioactive surfaces. The fact that there was a difference between the bioactive surfaces and the blasted control surface with respect to precipitation of CaP and protein content on the surfaces support the fact that there may be biochemical advantages in vivo by using a bioactive surface.  相似文献   

19.
The materials (C-ODTi) with different topographical surfaces that possess interstitial oxygen atoms into the host titanium lattice and an upper nanometric surface layer of anatase-TiO2 covered by a carbon thin layer were fabricated in this study. The carbon thin layer on the surface of C-ODTi was composed of amorphous carbon and nano-graphite crystals. In vitro tests, using human bone marrow-derived mesenchymal cells (hBMCs), were performed to check cytotoxicity, examining in particular cell morphology, cell proliferation, cell differentiation, and mineralization capability. After 10 days of culture a higher degree of cell viability was observed on the surface of C-ODTi with an abraded surface. We also observed that hBMCs cultured in direct contact with C-ODTi maintained their capability to express alkaline phosphatase activity (ALP) and formed mineralized nodules similar to the control cultures. Our results demonstrate that the carbon layer coating on the surface of C-ODTi possess better biological response than commercially pure titanium (cp Ti), which was evidenced by the higher proliferation rates of osteoblasts, higher osteo-differentiation and a higher mineralization capability.  相似文献   

20.
It is known that surface roughness and chemical composition of the titanium surface influence the osseointegration of titanium implants. Most commercial dental implants offer a shot-blasted rough surface. It is also known that apatite layers coating the surface of titanium implants improve bone response, but the adhesion of the layer to the substrate poses some problems.In this study the roughness and adhesion strength to a titanium dental implant surface of an apatite layer deposited via wet chemistry after a thermochemical treatment were compared with those of plasma-sprayed apatite layers and machined titanium surfaces. Different surface conditions have been studied: (a) as-received machined dental implant surface; (b) grit-blasted titanium surface; (c) grit-blasted and thermochemically-treated titanium surface; (d) titanium surfaces coated with plasma-sprayed apatite. The morphology and roughness of the samples were measured and compared. The adhesion of the apatite layers to the titanium was compared by means of a scratch test.Measured roughness showed that the deposition of an apatite layer did not affect roughness but plasma-sprayed apatite produced a decrease on roughness values when compared to control samples. Both roughness and adhesion strength of the deposited apatite layer to the titanium substrate were higher than those of the plasma-sprayed apatite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号