首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Ni-W alloy coatings with tungsten content from 32.5 to 61.2 wt.% were prepared in this study by electro-deposition. Experimental results show that the grain size of Ni-W coatings evaluated by XRD decreased with increasing tungsten content in coatings, however, the micro-hardness increased with increasing tungsten content. As-deposited Ni-61.2 wt.%W coating has amorphous-like structure and the grain size is around 1.5 nm, after annealing at 500 °C, the hardness of the coating is promoted to 1293 Hv owing to formation of Ni4W and NW precipitates. In addition, the heat-treated Ni-W coatings show a better wear resistance than the as-plated Ni-W coatings.  相似文献   

2.
The influences of Si (1.2 mol.%), Mn (1.2 mol.%) and Mo (2.8 mol.%) additions on the microstructure, properties and coating quality of laser cladded FeCoNiCrCu high-entropy alloy coating have been investigated. The multi-component alloy coating is found to be a simple face-centered cubic (FCC) solid solution with less component segregation and high corrosion resistance, microhardness and softening resistance properties. For the coating without Si, Mn and Mo additions, the microstructure is mainly composed of columnar and equiaxed grains with uniformly distributed alloying elements. The microhardness reaches 375 HV0.5, which is about 50% higher than that of the same alloy prepared by arc melting technique. But the coating quality is very poor. While for the coating with Si, Mn and Mo additions, the coating quality is greatly improved, the microhardness increases to 450 HV0.5, but the microstructure transforms to dendrite due to a slightly increase in component segregation.  相似文献   

3.
The nanocrystalline Co–W alloy coatings were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate (Na2WO4). Influence of the current density and Na2WO4 concentration in bath on the microstructure, morphology and hardness of the Co–W alloy coatings were investigated using an X-ray diffraction, a scanning electronic microscope and a Vickers hardness tester, respectively. In addition, the friction and wear properties of the Co–W alloy coating electrodeposited under different condition were evaluated with a ball-on-disk UMT-3MT tribometer. The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of the deposited Co–W alloy coatings were discussed in detail. The results showed that the microhardness of the deposited Co–W alloy coating was significantly affected by its average grain size, W content and crystal orientation. Smaller grain size, higher W content and strong hcp (1 0 0) orientation favor the improvement of the hardness for Co–W alloy coatings. The deposited Co–W alloy coating could obtain the maximum microhardness over 1000 kgf mm−2 by careful control of the electrodeposition conditions. The tribological properties of the electrodeposited Co–W alloy coating were greatly affected by its grain size, microhardness, surface morphologies and composition, and could be significantly improved by optimizing the electrodeposition condition.  相似文献   

4.
Spinning Water Atomization Process (SWAP), which was one of the rapid solidification processes, promised to produce coarse non-combustible magnesium alloy powder with 1–4 mm length, having fine α-Mg grains and Al2Ca intermetallic compounds. It had economical and safe benefits in producing coarse Mg alloy powders with very fine microstructures in the mass production process due to its extreme high solidification rate compared to the conventional atomization process. AMX602 (Mg–6%Al–0.5%Mn–2%Ca) powders were compacted at room temperature. Their green compacts with a relative density of about 85% were heated at 573–673 K for 300 s in Ar gas atmosphere, and immediately consolidated by hot extrusion. Microstructure observation and evaluation of mechanical properties of the extruded AMX602 alloys were carried out. The uniform and fine microstructures with grains less than 0.45–0.8 μm via dynamic recrystallization during hot extrusion were observed, and were much small compared to the extruded AMX602 alloy fabricated by using cast ingot. The extremely fine intermetallic compounds 200–500 nm diameter were uniformly distributed in the matrix of powder metallurgy (P/M) extruded alloys. These microstructures caused excellent mechanical properties of the wrought alloys. For example, in the case of AMX602 alloys extruded at 573 K, the tensile strength (TS) of 447 MPa, yield stress (YS) of 425 MPa and 9.6% elongation were obtained.  相似文献   

5.
Interfacial shear strength is one of the critical properties in bioceramic coatings on metal implants because it directly affects the success of implantation and long-term stability. In this study, shear strain lag method was employed to evaluate the interfacial shear strength of sol-gel derived fluoridated hydroxyapatite (FHA) coatings on Ti6Al4V substrates. The residual stresses were measured using the “wafer curvature method”. The resultant interfacial shear strength increased from pure HA’s ∼393-459 MPa as fluorine was increased to 1.96 at% and further increased to ∼572 MPa as fluorine increased to 3.29 at%. The residual stresses in the coating also decreased from pure HA’s ∼273-190 MPa and further to ∼137 MPa as fluorine composition in the coating increased. The reduction in the residual stress mainly comes from the reduction in the difference in coefficient of thermal expansion between the coating and the titanium alloy substrate.  相似文献   

6.
Carbon coatings applied on optical fibers via chemical vapor deposition were characterized by a resistance technique, focused ion beam/scanning electron microscopy (FIB/SEM), and reflectance Fourier-transform infrared spectroscopy (FTIR). The resistance technique measures the thickness of carbon film by measuring the resistance over a section of optical fiber, and backing out the film thickness. The FIB/SEM system was used to remove a cross section of the optical fiber and carbon coating and using a scanning transmission electron detector the thickness was measured. The FTIR approach is based on the fact that the wavelength of the light in the mid-infrared region (~ 10 μm) is significantly larger than the typical thickness of the carbon coatings (< 0.1 μm) which makes the coating “semi-transparent” to the infrared light. Carbon coating deposition results in significant transformations of the band profiles of silica in the reflectance spectra that were found to correlate with the carbon coating thickness for films ranging from 0.7 nm to 54.6 nm. The observed transformations of the reflectance spectra were explained within the framework of Fresnel reflection of light from a dual-layer sample. The advantage of this approach is a much higher spatial resolution in comparison with many other known methods and can be performed more quickly than many direct measurement techniques.  相似文献   

7.
The aim of this study was to investigate the hydroxyapatite coating on the Ti-35Nb-xZr alloy by electron beam-physical vapor deposition. The Ti-35Nb-xZr ternary alloys contained from 3 wt.% to 10 wt.% Zr content were manufactured by arc melting furnace. Hydroxyapatite (HA) coatings were prepared by electron-beam physical vapor deposition (EB-PVD) method, and crystallization treatment was performed in Ar atmosphere at 300 and 500 °C for 1 h. The coated surface morphology of Ti-35Nb-xZr alloy was examined by FE-SEM, EDX and XRD, respectively. In order to evaluate the corrosion behavior, the tests were performed by potentiodynamic, cyclic polarization and AC impedance test. All the electrochemical data were obtained using a potentiostat. The Ti-35Nb-xZr alloys exhibited equiaxed structure with β phase, the peak of β phase increased with Zr contents. The hardness and elastic modulus of Ti-35Nb-xZr alloys decreased as Zr content increased. The HA coated layer was approximately 150 nm and Ca/P ratio of HA coated surface after heat treatment at 500 °C was around 1.67. The HA thin film consisted of small droplets with spherical shape by crystallization. From the anodic polarization curves, HA coated and heat treated Ti-35Nb-10Zr alloy showed higher corrosion potential than other samples. HA coated film on the Ti-35Nb-10Zr alloy can be shown high polarization resistance by crystallization.  相似文献   

8.
Myung-Hyun Lee 《Thin solid films》2011,519(18):6097-6101
We fabricated very thin solid silver films with thicknesses below 50 nm using a spin coating method. An aqueous silver ionic complex solution was spin-coated and then thermally cured for a few minutes at a low temperature. The properties of the spin-coated silver films were compared to the properties of silver films deposited by thermal evaporation. The spin-coated thin silver films possessed silver crystallinity and a surface roughness of ~ 2.83 nm, while the thermally evaporated thin silver films also possessed silver crystallinity with a surface roughness of ~ 2.44 nm. Long-range surface plasmon polariton (LR-SPP) waveguides fabricated by both spin coating and thermal evaporation were also characterized and compared. The propagation losses of the 23 nm thick spin-coated and the 19 nm thick evaporated LR-SPP waveguides with strip widths of 7 μm were 3.6 and 4.2 dB/cm, respectively, and their coupling losses were 1.4 and 1.0 dB/2facets, respectively. The use of the spin coating method is a very cost effective solution because the films can be formed at low temperature in a short period of time without requiring a vacuum system. In addition, there are many potential applications of using spin-coated very thin solid silver films in LR-SPP waveguides and nano electrical circuit patterns.  相似文献   

9.
It is difficult to deposit dense intermetallic compound coatings by cold spraying directly using compound feedstock powders due to their intrinsic low temperature brittleness. A method to prepare intermetallic compound coatings in-situ employing cold spraying was developed using a metastable alloy powder assisted with post heat treatment. In this study, a nanostructured Fe(Al)/Al2O3 composite alloy coating was prepared by cold spraying of ball-milled powder. The cold-sprayed Fe(Al)/Al2O3 composite alloy coating was evolved in-situ to FeAl/Al2O3 intermetallic composite coating through a post heat treatment. The effect of heat treatment on the phase formation, microstructure and microhardness of cold-sprayed Fe(Al)/Al2O3 composite coating was investigated. The results showed that annealing at a temperature of 600 °C results in the complete transformation of the Fe(Al) solid solution to a FeAl intermetallic compound. Annealing temperature significantly influenced the microstructure and microhardness of the cold-sprayed FeAl/Al2O3 coating. On raising the temperature to over 950 °C, diffusion occurred not only in the coating but also at the interface between the coating and substrate. The microhardness of the FeAl/Al2O3 coating was maintained at about 600HV0.1 at an annealing temperature below 500 °C, and gradually decreased to 400HV0.1 at 1100 °C.  相似文献   

10.
Nanoparticles of iron carbides wrapped in multilayered graphitic sheets (carbon nanocapsules) were synthesized by electric plasma discharge in an ultrasonic cavitation field in liquid ethanol and purified by selective oxidation and magnetic separation. The particles had 100–200 nm in diameter after centrifuging for 10 min at 4000 rpm. Carbon nanocapsules were covered by wispy poly(ethylene glycol) PEG coating about 7–10 nm in thickness. The number of PEG chains coated on carbon nanocapsules could be estimated as 9.15%. The values of saturation magnetization Ms and coercivity Hc of purified carbon nanocapsules without PEG coating were 112 emu g−1 and 75 Oe respectively. Magnetically soft carbon nanocapsules with a poly(ethylene glycol) coating on the surface may possibly be used as biocompatible magnetic nanoparticles in medical applications.  相似文献   

11.
Fabrication and performance of TiN/TiAlN nanometer modulated coatings   总被引:2,自引:0,他引:2  
TiN/TiAlN multilayered coatings with bilayer periods (λBD) ranging from 6 to 30 nm were prepared on TC4 alloy and Si (100) wafer substrates by magnetic filtered pulsed vacuum cathodic arc plasma technique. The analyses with scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray energy dispersive spectroscope (EDS) and X-ray photoelectron spectroscope (XPS) with Ar + sputtering indicated that the as-deposited coatings had nanometer modulated structure, TiN and TiAlN with (111) preferred orientation were the main compounds and the average atoms ratio of N:(Ti + Al) was about 1.24-1.29. Scratch test showed that the coatings were fairly adherent to TC4 substrates, and the maximal critical load was about 57 N. The highest nano-hardness and modulus about 28 GPa and 283 GPa, respectively, were obtained for the multilayer with λBD = 12 nm, examined with nano-indentation method. The electrochemical corrosion test showed that the coatings improved the TC4 alloy's property of anti-corrosion effectively, especially with λBD = 20 nm.  相似文献   

12.
BiFeO3 nanoparticles were prepared by a wet chemical synthesis method. Transparent films were deposited on glass and quartz substrates by dip and spin coating processes from the synthesized sol. We obtained thicker films (~ 2 µm) by dip coating process and thinner films (~ 200 nm) by spin coating process. Transmission electron microscopy images confirmed that the particles are nanocrystalline in size. From the optical transmittance spectra the band gap of the BiFeO3 nanoparticles was determined in the range of ~ 3.03-2.88 eV (~ 410-430 nm). Electrical resistivity, polarization, zero-field-cooled and field-cooled magnetizations versus temperature characteristics were also studied for these films.  相似文献   

13.
One-step aqueous synthesis of stoichiometric Fe-Cu nanoalloy   总被引:1,自引:0,他引:1  
Fe50 − xCu50 − xB2x alloy was obtained by an aqueous chemical reduction at pH = 7.0, using fast and slow NaBH4 solution addition methods. According to X-ray diffraction patterns, TEM and HRTEM observations, smaller than 10 nm nanocrystals of fcc-FeCuB were formed when the fast method was employed. The room temperature Mössbauer spectrum of this FeCuB nanoalloy shows a quadrupole doublet with an isomer shift of 0.355(1) mm/s and a quadrupole splitting of 0.772(2) mm/s, and a broadened magnetic sextet with a quadrupole splitting of 0.020(3) mm/s and an isomer shift of 0.436(5) mm/s, exhibiting a distinctive high average magnetic field of 40.57(5) T. Grains with a size larger than 10 nm were obtained for a slow method nanoalloy, and its Mössbauer spectrum consisted only of a broadened sextuplet characteristic of an fcc-FeCuB alloy.  相似文献   

14.
Amorphous and nanocrystalline Fe73.5Cu1Nb3Si13.5B9 coatings were formed by plasma-spraying micron-sized powders onto H62 brass substrates and aluminum pipes. The coatings are about 0.2-0.3 mm in thickness with fully dense and low porosity. The microstructure of the coatings is classified into two regions, namely, a full amorphous phase region and homogeneous dispersion of α-Fe nanoscale particles with a scale of 30-70 nm. The hardness of the amorphous and nanocrystalline coatings is about 960 HV100g. Coercivity (Hc), saturation induction (B800), and initial relative permeability (μi) of the coatings are 144 A/m, 0.27 T, 249, respectively, under 800 A/m direct current (DC) magnetic field. The magnetic shielding performance is good under DC magnetic field and its magnetic shielding effectiveness (SE) is 10-12 dB at coating thickness of 0.45 mm under static magnetic field of 2-40 Oe. The SE increases by increasing the coating thickness when the magnetic field frequencies are 50, 100 and 200 Hz with an intensity of 0.85 Oe. The results indicate that the amorphous and nanocrystalline alloy coatings can be good for some magnetic shielding applications.  相似文献   

15.
Yi-Ying Li 《Thin solid films》2010,518(24):7527-7531
The CrN top layer and NiP interlayer were sequentially deposited to form a CrN/NiP composite coating through sputtering technique. The CrN/NiP coating systems deposited at 350 °C, 450 °C, and 550 °C, showed amorphous/nanocrystalline, nanocrystallize with precipitations, and fully crystallized microstructure respectively for the NiP interlayers. With the introduction of NiP interlayer, the coating assemblies exhibited superior corrosion characteristics than single CrN coatings. The amorphous NiP interlayer deposited at 350 °C revealed a lower corrosion current as compared to those with crystallized NiP layers owing to their structural defects in the alloy layer. With the combination of CrN and NiP layers the corrosion attach was retarded and a better corrosion resistance was found for the CrN/NiP composite coating.  相似文献   

16.
Metallic and bimetallic nanoparticles of copper and silver in various proportions were prepared by microwave assisted chemical reduction in aqueous medium using the biopolymer, starch as a stabilizing agent. Ascorbic acid was used as the reducing agent. The silver and copper nanoparticles exhibited surface plasmon absorption resonance maxima (SPR) at 416 and 584 nm, respectively; while SPR for the Cu-Ag alloys appeared in between depending on the alloy composition. The SPR maxima for bimetallic nanoparticles changes linearly with increasing copper content in the alloy. Transmission electron micrograph (TEM) showed monodispersed particles in the range of 20 ± 5 nm size. Both silver and copper nanoparticles exhibited emission band at 485 and 645 nm, respectively. The starch-stabilized nanoparticles exhibited interesting antibacterial activity with both gram positive and gram negative bacteria at micromolar concentrations.  相似文献   

17.
In the present study, the effect of Fe-rich intermetallics has been investigated on the wear behavior of eutectic Al–Si alloy (LM13). Dry sliding wear tests have been conducted using a pin-on-disk machine under different normal loads of 18, 51, 74 and 100 N at a constant sliding speed of 0.3 m/s. Addition of 1.2% Fe to the LM13 alloy leads to the formation of the flake like β-intermetallic compounds. These hard compounds initiate micro cracks and can reduce the wear resistance of the alloy. The addition of Mn converts the flake like β-intermetallic compounds to the star-like α-intermetallics and decreases the detrimental effect of iron. Applying high cooling rate during solidification of the alloy containing Fe and Mn, resulted to the formation of finer α-intermetallic compounds and improved the wear behavior of the alloy to a great extent.  相似文献   

18.
Anatase TiO2 coated multiwalled carbon nanotube (MWNT) nanocomposites were prepared by combining the sol-gel method with a self assembly technique at a low temperature. XRD, TEM, FTIR and XPS spectra were applied to characterize the crystal phase, microstructure, and other physicochemical properties of the sample. The results showed that MWNTs were covered with a 12-20 nm thickness layer of anatase TiO2 or surrounded by a 30 -290 nm thickness coating of anatase TiO2. The layer or coating is constructed of TiO2 nanoparticles about 5.8 nm. Furthermore, as-prepared composite was rich in surface hydroxyl groups.  相似文献   

19.
To find a method to form nano-size FePt alloy for ultra-high density magnetic recording media, this work concentrated on the formation mechanisms of nano-island FePt films on amorphous glass substrates. FePt films of different thicknesses (1-10 nm) were deposited on amorphous glass substrates and post-annealed at 700 °C for 10 and 30 min. The configuration of the film changed during the annealing process due to the surface energy difference between the glass substrate and FePt alloy. Investigation of the microstructures and magnetic properties of the ordered L10 FePt films revealed that the 1 nm FePt film annealed at 700 °C for 10 min had perpendicular magnetic anisotropy and good reproducibility of forming well-separated FePt nano-size islands for ultra-high density magnetic recording media.  相似文献   

20.
In this paper the behavior of a 250 nm and a 350 nm thick Indium tin oxide (ITO) layers deposited on a 200 μm thick high temperature aromatic polyester substrate (Arylite™) and spin coated with a 3 μm silica-acrylate hybrid coating (Hard Coat) is discussed. In-situ optical microscopy of the layered structures under uniaxial compressive strain was used to determine the buckle delamination rate at different applied strains. The effect of applied uniaxial compressive strain and layer thickness on the evolution of buckle width and height was investigated. The biaxial-residual stress, uniaxial compressive stress, poor adhesion at the interface and Poisson’s ratio are believed to be responsible for the formation of telephone-cord buckling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号