首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
工程结构陶瓷磨削力试验研究   总被引:12,自引:3,他引:9  
本文对工程结构陶瓷在金刚石砂轮磨削过程中的磨削力进行了详细的实验研究。分析了不同因素对磨削力及磨削效果的影响,建立了陶瓷磨削力的经验公式,探讨了适合于陶瓷特点的高效磨削方法。  相似文献   

2.
阐述了工程陶瓷的性能、种类及其应用,介绍了工程陶瓷常用的加工方法即用金刚石砂轮磨削工程陶瓷。磨削力是磨削加工的主要因素,在介绍了工程陶瓷磨削机制基础上,对磨削力研究现状进行了总结,最后对磨削力的研究进行展望。  相似文献   

3.
工程陶瓷超声波磨削加工技术   总被引:10,自引:0,他引:10  
对工程陶瓷的超声波磨削进行了深入研究,与普遍磨削做了对比试验,试验了磨削参数的变化对磨削力及表面粗糙度的影响,并分析了工程陶瓷的脆性与塑性去除机理。研究证明:综合考虑精度与效率指标,超声波磨削是一种理想的工程陶瓷加工方法。  相似文献   

4.
磨削力是反映磨削过程的重要参数,磨削力与被磨材料的性能和显微结构、磨削用量、砂轮特性以及材料去除机制等有着密切关系。从陶瓷磨削模型和工程陶瓷材料磨削过程中的材料去除机制出发,分析了陶瓷磨削过程,研究了磨削力的形成,分析了磨削力的特点,并从磨削力的影响因素出发,分别研究了陶瓷材料性能、磨削方向、砂轮磨削速度、工件速度、磨削深度和砂轮粒度对磨削力的影响,对陶瓷磨削理论有了进一步的认识。  相似文献   

5.
工程胸瓷超声波磨削加工技术   总被引:3,自引:0,他引:3  
对工程陶瓷的超声波磨削进行了深入研究,与普通磨削做了对比试验。试验了磨削参数的变化对磨削力及表面粗糙度的影响,并分析了工程陶瓷的脆性与塑性去除机理。研究证明综合考虑精度与效率指标,超声波磨削是一种理想的工程陶瓷加工方法。  相似文献   

6.
工程陶瓷缓进给磨削磨削力的实验研究   总被引:10,自引:1,他引:9  
本文基于试验和理论分析,深入研究了氧化铝陶瓷缓进给磨削过程,测量了磨削力、磨削能、磨头功率;利用回归分析方法获得了磨削力和磨削能的经验公式;分析了磨削参数对磨削力、磨削能、磨头功率的影响规律;在上述分析的基础上,探讨了工程陶瓷在缓进给磨削方式下的高效磨削方法。  相似文献   

7.
关于工程陶瓷磨削力和磨削温度的研究   总被引:4,自引:0,他引:4  
杨海  孙月明 《磨床与磨削》1993,(4):35-38,F003
本文研究了陶瓷磨削的磨屑形成机理,建立了以裂纹的产生与发展与基础的工程陶瓷材料的磨削模型。指出:材料的横向裂纹是材料被破坏的主要因素。推导了陶瓷磨削的磨削力与材料去除率的关系式和磨削温度表达式,理论分析与试验结果比较得出:金刚石砂轮对陶瓷材料的磨削有较好的适应性。  相似文献   

8.
圆弧成形磨削是难加工零件复杂型面的加工方法,对其磨削力的研究有利于改善工程陶瓷的表面质量。基于圆弧砂轮的结构特点及尺寸趋近思想对陶瓷材料圆弧成形磨削力进行预测。通过研究磨粒对工程陶瓷的去除机制,提出建立单颗磨粒滑擦、塑性及脆性去除磨削力模型。基于砂轮磨粒尺寸与分布差异,利用概率统计方法对磨削中不同去除方式的有效磨粒数进行探讨,进而实现圆弧成形磨削力理论模型的构建。最后通过磨削力实验对理论模型进行验证。结果表明:法向磨削力和切向磨削力理论值与实验值平均误差分别为8.793%和9.986%;磨削力随着磨削深度及进给速度的增加而增加,随着砂轮速度的增加而减小。  相似文献   

9.
纳米陶瓷由于其相对于工程陶瓷优越的力学性能及物理特性,在各行业都有广泛的应用前景。采用超声复式加工方法,针对不同的磨削参数对纳米ZrO2陶瓷进行了普通和超声磨削实验,研究了磨削参数对磨削力的影响,并通过X射线衍射分析了在普通和超声磨削状态下对工件表面残余应力及纳米ZrO2陶瓷各晶相的影响。研究结果表明:利用超声振动磨削能有效减少磨削力,不同的磨削方式对纳米ZrO2陶瓷表面残余应力影响较大,采用普通磨削工件表面残余应力为拉应力,当超声振动方向平行于砂轮速度方向时,工件表面残余应力为压应力,振动方向垂直于砂轮速度方向时工件表面残余应力绝对值较小。  相似文献   

10.
本文通过一系列的试验,研究了陶瓷结合剂CBN砂轮外圆切入磨削45淬火钢的磨削力的变化规律,建立了相应磨削力的经验公式,并与普通砂轮磨削作对比,试验结果表明,陶瓷结合剂CBN砂轮的磨削力比普通砂轮的小,采用陶瓷结合剂CBN砂轮磨削可以达到更高的磨削效率。  相似文献   

11.
不同结合剂金刚石砂轮磨削氧化铝陶瓷工艺实验研究   总被引:2,自引:2,他引:2  
本文利用树脂、青铜、铸铁三种结合剂金刚石砂轮,以氧化铝陶瓷为加工对象,通过研究各自的磨削比、磨削力、磨削表面粗糙度等指标,进行了三种结合剂砂轮的磨削性能比较,发现铸铁结合剂金刚石砂轮和ELID(在线电解修整)磨削方法比较适合氧化铝陶瓷等硬脆材料的磨削(尤其是精密磨削)。  相似文献   

12.
本文探讨了铸铁短纤维结合剂金刚石砂轮内圆切入磨削工程陶瓷的力特征、尺寸形成规律以及磨削参数对表面粗糙度及孔径差的影响。最后考察了该类砂轮的适用条件和使用范围。  相似文献   

13.
本文采用不同粒度、不同浓度的树脂结合剂金刚石砂轮,对两种典型的特种陶瓷材料ZrO2与Si3N4进行了端面磨削实验研究;通过在线监测磨削力和功率消耗,并结合加表面的SEM微观分析,探讨了ZrO2与Si3N4陶瓷表面的形成特征及材料的去除机理。  相似文献   

14.
工程陶瓷发动机缸套零件超声振动磨削研究(Ⅰ)   总被引:1,自引:0,他引:1  
本文采用作者自行研制的超声振动珩磨机床对工程陶瓷发动机缸套类零件进行了超声振动磨削试验研究。研究表明:对于工程陶瓷(Si3N4、ZrO2、Al2O3)缸体,采用超声振动珩磨,不仅可以取得以团结磨具代替微粉的加工效果,而且可以使工件表面层的微裂纹大幅度减轻;不仅具有比普通珩磨高二倍以上的加工效率,而且具有很高的磨条耐用度(为普通加工下房条耐用度的五倍以上)。对于制造陶瓷发动机缸套类零件来说,本研究提供了一种质量效率兼顾、加工成本较低且可靠性高的加工方法。  相似文献   

15.
本文对工程陶瓷在连续轴向进给时的平面磨削进行了详细的研究,分析了磨削参数,尤其是轴向进给速度对平面磨削时磨削过程和磨削效果的影响,探讨了适合于陶瓷特点的高效磨削方法。  相似文献   

16.
基于阵列微孔的微结构砂轮和普通砂轮对氧化铝、氮化铝、氧化锆及氮化硅陶瓷材料的不同磨削性能,对比研究不同砂轮和不同陶瓷材料的磨削力、比磨削能、表面粗糙度及表面崩边特征。结果表明:相比普通砂轮,微结构砂轮提高了氧化铝、氮化铝及氧化锆陶瓷的磨削力和比磨削能,降低了表面粗糙度,而对氮化硅陶瓷的磨削力及表面粗糙度影响不明显;相比其他陶瓷,氮化硅陶瓷具有较高的磨削力和比磨削能。从磨削加工表面特征上看,氧化铝、氮化铝陶瓷以脆性去除方式为主,氧化锆以塑性去除为主,而氮化硅则兼具塑性和脆性去除特征;微结构砂轮加工表面崩边尺寸大于普通砂轮的崩边尺寸,氧化铝和氮化铝陶瓷的表面崩边尺寸明显大于氧化锆和氮化硅陶瓷的。  相似文献   

17.
磨抛花岗石过程中温度的测量与分析   总被引:1,自引:0,他引:1  
花岗石磨抛过程的温度是影响加工过程的一个重要因素,本文通过夹持在工件中的一对热电偶薄膜测量磨抛过程中弧区内花岗石的表面温度。结果表明,花岗石在磨抛试验过程中的温度大约在100~200℃左右,温度变化不仅与加工工具有关,而且还与加工所施加的压力以及是否使用冷却液均有很大的关系。  相似文献   

18.
外圆磨削加工的仿真、优化及控制   总被引:6,自引:2,他引:4  
磨削技术已广泛应用于最后加工有光滑表面和高精度要求的零件,在过去的30年里,经过广泛的研究,对磨削加工的许多方面有了一个较为清楚的了解。本论文的目的在于说明怎样利用我们对磨削过程的理解来预报磨削特性和获得最佳加工条件。一个集成了描述磨削过程中不同方面的分析模块的软件包已被开发出来。这软件包括三个主要模块:仿真,校准和优化,仿真模块作为一个虚拟磨床来预测磨削过程和零件质量,校准模块通过实测参数如功率,表面粗糙度和椭圆度等对模型的系数进行修正,从而对实际磨削特性进行学习,优化模块是以最小化周期时间或以基于服从工件质量约束校正模型后的周期时间为目标来确定磨削和修整参数。本软件已被集成进了PC开放体系控制器(OAC),作为智能磨削系统(IGS)的基础。  相似文献   

19.
陶瓷磨削的材料去除机理   总被引:9,自引:3,他引:9  
磨削是目前工程陶瓷的主要加工方法,为了开发新的高效、低成本、低损伤加工陶瓷的方法,需要更深入地揭示其加工机理。本文介绍了陶瓷磨削的材料去除机理方法的研究进展,就其进行了一定的讨论,并得出相关的结论。  相似文献   

20.
在不同磨削深度、砂轮转速和进给速度组合下,研究微粉金刚石钎焊砂轮磨削氧化铝陶瓷过程的磨削力及工件的表面粗糙度的变化规律,并筛选出低磨削力和低工件表面粗糙度的加工工艺参数。试验结果表明:在微粉金刚石钎焊砂轮的磨削过程中,氧化铝陶瓷主要通过脆性断裂的方式去除;随着磨削深度、进给速度的增加,砂轮在进给方向和切深方向的力以及工件表面粗糙度都上升;随着砂轮转速的增加,进给方向和切深方向的力以及工件表面粗糙度都下降。试验获得的低磨削力和低工件表面粗糙度精密加工工艺参数分别为:磨削深度为1.0 μm,进给速度为12 mm/min,砂轮转速为24 000 r/min和磨削深度为1.0 μm,进给速度为1 mm/min,砂轮转速为20 000 r/min。低磨削力磨削时,微粉金刚石钎焊砂轮受到的X方向和Z方向的磨削力分别为0.15 N和0.72 N;精密加工后的氧化铝陶瓷的表面粗糙度值可达0.438 μm。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号