首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracellular polysaccharides (EPS) produced by lactic acid bacteria (LAB) are associated with the rheology, texture, and mouthfeel of fermented milk products, including yogurt. This study investigated the immunomodulatory effects of EPS purified from the culture supernatant of Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) OLL1073R-1. The crude EPS were prepared from the culture supernatant of L. bulgaricus OLL1073R-1 by standard chromatographic methods, and were fractionated into neutral EPS and acidic EPS (APS). Acidic EPS were further fractionated into high molecular weight APS (H-APS) and low molecular weight APS (L-APS). High molecular weight APS were shown to be phosphopolysaccharides containing D-glucose, D-galactose, and phosphorus. Stimulation of mouse splenocytes by H-APS significantly increased interferon-γ production, and, moreover, orally administered H-APS augmented natural killer cell activity. Oral administration of yogurt fermented with L. bulgaricus OLL1073R-1 and Streptococcus thermophilus OLS3059 to mice showed a similar level of immunomodulation as H-APS. However, these effects were not detected following administration of yogurt fermented with the starter combination of L. bulgaricus OLL1256 and S. thermophilus OLS3295. We conclude from these findings that yogurt fermented with L. bulgaricus OLL1073R-1, containing immunostimulative EPS, would have an immunomodulatory effect on the human body.  相似文献   

2.
Yoghurt is increasingly being used as a carrier of probiotic bacteria for their potential health benefits. To meet with a recommended level of ≥ 106 viable cells/g of a product, assessment of viability of probiotic bacteria in market preparations is crucial. This requires a working method for selective enumeration of these probiotic bacteria and lactic acid bacteria in yoghurt such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei and Bifidobacterium. This chapter presents an overview of media that could be used for differential and selective enumerations of yoghurt bacteria. De Man Rogosa Sharpe agar containing fructose (MRSF), MRS agar pH 5.2 (MRS 5.2), reinforced clostridial prussian blue agar at pH 5.0 (RCPB 5.0) or reinforced clostridial agar at pH 5.3 (RCA 5.3) are suitable for enumeration of Lb. delbrueckii subsp. bulgaricus when the incubation is carried out at 45 °C for 72 h. S. thermophilus (ST) agar and M17 are recommended for selective enumeration of S. thermophilus. Selective enumeration of Lb. acidophilus in mixed culture could be made in Rogosa agar added with 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside (X-Glu) or MRS containing maltose (MRSM) and incubation in a 20% CO2 atmosphere. Lb. casei could be selectively enumerated on specially formulated Lb. casei (LC) agar from products containing yoghurt starter bacteria (S. thermophilus and Lb. delbrueckii subsp. bulgaricus), Lb. acidophilus, Bifidobacterium spp. and Lb. casei. Bifidobacterium could be enumerated on MRS agar supplemented with nalidixic acid, paromomycin, neomycin sulphate and lithium chloride (MRS-NPNL) under anaerobic incubation at 37 °C for 72 h.  相似文献   

3.
Cells of Lactobacillus delbrueckii ssp. lactis RM2-5 were added to cottage cheese stored at 7 degrees C in different amounts to determine if they would inhibit the growth of Pseudomonas fluorescens, also inoculated into the cheese samples. In addition, experiments were conducted in which no spoilage organisms were added to determine the effect of the lactobacilli on the natural background flora in the cottage cheese. For most experiments, as the numbers of lactobacilli increased, the numbers of spoilage organisms were lower than in the control on any given day of storage. In cheese inoculated with P. fluorescens, the numbers of spoilage organisms in the control had increased 5 log cycles by d 7, whereas the treatment containing the highest level of L. delbrueckii ssp. lactis RM2-5 (1.0 x 10(9) cfu/g) had not, and did not, increase over the course of the 21-d study. In the experiments where no spoilage organisms were added, lactobacilli significantly retarded the growth of gram-negative bacteria in the cheese. However, in these experiments, mold growth on the samples became a limiting factor during extended storage. The results of these experiments indicate that lactobacilli could be effective at helping control gram-negative spoilage bacteria in cottage cheese, thus potentially extending its shelf life.  相似文献   

4.
Nineteen bacteriological media were evaluated to assess their suitability to selectively enumerate Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus acidophilus, bifidobacteria, and propionibacteria. Bacteriological media evaluated included Streptococcus thermophilus agar, pH modified MRS agar, MRS-vancomycine agar, MRS-bile agar, MRS-NaCl agar, MRS-lithium chloride agar, MRS-NNLP (nalidixic acid, neomycin sulfate, lithium chloride and paramomycine sulfate) agar, reinforced clostridial agar, sugar-based (such as maltose, galactose, sorbitol, manitol, esculin) media, sodium lactate agar, arabinose agar, raffinose agar, xylose agar, and L. casei agar. Incubations were carried out under aerobic and anaerobic conditions at 27, 30, 37, 43, and 45 degrees C for 24, 72 h, and 7 to 9 d. S. thermophilus agar and aerobic incubation at 37 degrees C for 24 h were suitable for S. thermophilus. L. delbrueckii ssp. bulgaricus could be enumerated using MRS agar (pH 4.58 or pH 5.20) and under anaerobic incubation at 45 degrees C for 72 h. MRS-vancomycine agar and anaerobic incubation at 43 degrees C for 72 h were suitable to enumerate L. rhamnosus. MRS-vancomycine agar and anaerobic incubation at 37 degrees C for 72 h were selective for L. casei. To estimate the counts of L. casei by subtraction method, counts of L. rhamnosus on MRS-vancomycine agar at 43 degrees C for 72 h under anaerobic incubation could be subtracted from total counts of L. casei and L. rhamnosus enumerated on MRS-vancomycine agar at 37 degrees C for 72 h under anaerobic incubation. L. acidophilus could be enumerated using MRS-agar at 43 degrees C for 72 h or Basal agar-maltose agar at 43 degrees C for 72 h or BA-sorbitol agar at 37 degrees C for 72 h, under anaerobic incubation. Bifidobacteria could be enumerated on MRS-NNLP agar under anaerobic incubation at 37 degrees C for 72 h. Propionibacteria could be enumerated on sodium lactate agar under anaerobic incubation at 30 degrees C for 7 to 9 d. A subtraction method was most suitable for counting propionibacteria in the presence of other lactic acid bacteria from a product. For this method, counts of lactic bacteria at d 3 on sodium lactate agar under anaerobic incubation at 30 degrees C were subtracted from counts at d 7 of lactic bacteria and propionibacteria.  相似文献   

5.
The objective of the study was to determine the effect of fatty acid additions to the cells and enzyme extract of Lactobacillus delbrueckii ssp. bulgaricus (CCRC14009) on CLA production. Washed cells of L. delbrueckii ssp. bulgaricus, obtained by cultivation in a MRS broth, were mixed with BSA and each of the three fatty acids: linoleic, oleic, and linolenic acids in sodium phosphate buffer at pH 6.5. After incubation at 37 °C for 108 h, CLA concentration was analyzed by HPLC. Enzyme extract from the culture was also reacted with each fatty acid at 50 °C for 10 min at pH 5 to test for CLA production. Results showed that linoleic acid addition to the culture improved CLA production, indicating the presence of linoleic acid isomerase activity in the culture. The crude enzyme extract from the culture was observed to be capable of oleic and linolenic acid conversions into CLA, demonstrating the possible presence of desaturase activity in the enzyme extract.  相似文献   

6.
The application of Kluyveromyces marxianus (IFO 288), Lactobacillus delbrueckii ssp. bulgaricus (ATCC 11842) and Lactobacillus helveticus (ATCC 15009) as starter cultures for sourdough bread making was examined. Production of lactic and acetic acids, bread rising, volatile composition, shelf-life and organoleptic quality of the sourdough breads were evaluated. The amount of starter culture added to the flour, the dough fermentation temperature and the amount of sourdough used were examined in order to optimise the bread making process. The use of mixed cultures led to higher total titratable acidities and lactic acid concentrations compared to traditionally made breads. Highest acidity (3.41 g lactic acid/kg of bread) and highest resistance to mould spoilage were observed when bread was made using 50% sourdough containing 1% K. marxianus and 4% L. delbrueckii ssp. bulgaricus. The use of these cultures also improved the aroma of sourdough breads, as shown by sensory evaluations and as revealed by GC–MS analysis.  相似文献   

7.
Two mixed starter cultures were used for sourdough bread making to evaluate their ability to improve quality and increase bread shelf-life: Lactobacillus delbrueckii ssp. bulgaricus or Lactobacillus helveticus mixed with the lactose fermenting yeast Kluyveromyces marxianus as alternative baker’s yeast. Control sourdough breads (K. marxianus) without the addition of bacteria, were also prepared. The changes on the headspace aroma volatiles during storage were assessed using solid-phase microextraction (SPME) GC–MS analysis. The effect of these changes on bread flavour was evaluated by consumer preference evaluations and the results were co-evaluated with those from the GC–MS analysis. The obtained results showed differences in the volatile composition of the different types of breads examined, as well as dramatic decreases of the number and the amount of volatiles after five days of storage. The sourdough breads made with K. marxianus and L. bulgaricus, had a more complex aroma profile, longer shelf-life and achieved the highest scores in the sensory tests.  相似文献   

8.
Lactic acid bacteria are often produced as frozen or freeze-dried cultures that can be used for the direct inoculation of milk in cheese and fermented milk production processes. The objective of this study was to investigate whether the resistance of Lactobacillus delbrueckii ssp. bulgaricus to freezing could be improved by natural selection. Three parallel cultures of strain CFL1 were propagated for 30 cycles in which each cycle involved three serial transfers through milk, one freezing step, and one thawing step. The concentration in viable cells after thawing as well as the acidifying activity of the thawed cultures increased dramatically throughout the experiment. This may be explained by the random appearance of better-adapted mutants that can outcompete the other genotypes. However, after 30 cycles of subcultivation, freezing, and thawing, all the cultures contained subpopulations having different survival rates to freezing. Our results show that serial transfer culture experiments may be used to improve technological properties of lactic acid bacteria. Furthermore, investigation of the mutations that are responsible for an increased cryotolerance may help to define new targets for improving the resistance of lactic acid bacteria to several stresses.  相似文献   

9.
本实验采用同时蒸馏萃取- 气谱- 质谱(SDE-GC-MS)联用技术对5 株德氏乳杆菌保加利亚亚种L.b-01、L.b-3、L.b-MYC、L.b-SP1.1 和L.b-M01A 发酵乳中风味物质进行了定性和定量测定,经分析分别有13、19、11、9、12 种成分为发酵乳的风味物质,共涉及酸类化合物、酯类化合物、醇类化合物、羰基化合物、芳环和杂环化合物6 大类、22 种物质。除L.b-M01A 菌产乙醇、乙酸含量较高外,其他各菌株间未发现存在明显的代谢差异。  相似文献   

10.
One of the main microbiological problems of the dairy industry is the susceptibility of starter bacteria to virus infections. Lactobacillus delbrueckii, a component of thermophilic starter cultures used in the manufacture of several fermented dairy products, including yogurt, is also sensitive to bacteriophage attacks. To avoid the problems associated with these viruses, quick and sensitive detection methods are necessary. In the present study, a fast real-time quantitative polymerase chain reaction assay for the direct detection and quantification of L. delbrueckii phages in milk was developed. A set of primers and a TaqMan MGB probe was designed, based on the lysin gene sequence of different L. delbrueckii phages. The results show the proposed method to be a rapid (total processing time 30 min), specific and highly sensitive technique for detecting L. delbrueckii phages in milk.  相似文献   

11.
The cryotolerance of Lactobacillus delbrueckii ssp. bulgaricus is weak during vacuum freeze-drying. Many factors affect cryoresistance of these bacteria, such as cryoprotectant composition, the lyophilization technology used, and the intrinsic characteristics of the bacteria. In this research, we explored the fermentation technology and other preconditioning treatments of cells in improving the cryoresistance of Lactobacillus delbrueckii ssp. bulgaricus strains during lyophilization. The addition of yeast extract in the propagation medium exerted a negative effect on the cryotolerance of these bacteria and decreased survival during lyophilization. The count of the freeze-dried cells from medium containing a high level (4%) of yeast extract was only 4.1 × 109 cfu/g, indicating a death rate as high as 88%, compared with the culture medium without yeast extract, with a lower death rate of 44.7%. When Lactobacillus delbrueckii ssp. bulgaricus ND02 was propagated in yeast extract-free de Man, Rogosa, and Sharpe broth at a set pH value of 5.1, the cells showed unexpectedly higher survival after freeze-drying. Viable counts of the lyophilized cell of strain ND02 cultivated at pH 5.1 could reach 1.05 × 1011 cfu/g and survival of the freeze-drying process was 68.3%, whereas at pH 5.7, survival was only 51.2%. We also examined the effects of pretreatment of cells on survival of the bacteria after vacuum freeze-drying. By analyzing the effect of pretreatment conditions on the expression of cold- and heat-shock genes, we established 2 pretreatments that improved survival of cells after lyophilization. Optimal fermentation conditions and pretreatment of the cell-cryoprotectant mixture at 10°C for 2 h or 37°C for 30 min improved the cryoresistance of 4 strains of Lactobacillus delbrueckii ssp. bulgaricus to varying degrees. Cells of IMAU20269 and IMAU20291 that were pretreated showed enhanced survival of 16.06 and 16.82%, respectively, after lyophilization. Expression of cold- and heat-shock genes for pretreated strains ND02, IMAU80423, IMAU20269, and IMAU20291 was analyzed by using quantitative PCR. From the expression of 2 cold shock-induced genes (cspA and cspB) and 6 heat shock-induced genes (groES, hsp, hsp20, hsp40, hsp60, and hsp70), strain ND02 showed a higher relative quantity of gene expression and displayed superior resistance to cold-induced stress during the freeze-drying process.  相似文献   

12.
The intracellular proteinase of Lactobacillus casei ssp. casei LLG was isolated in the cytoplasmic fraction with 0.05 M Tris-HCl buffer (pH 7.5). The enzyme was purified by the fast protein liquid chromatography system equipped with ion-exchange and gel filtration chromatographies. This proteinase comprised a single monomeric form and had a molecular weight of about 55 kDa and an isoelectric point near pH 4.9. The optimum pH and temperature for the enzyme activity were determined to be pH 6.5 and 37 degrees C, respectively. The enzyme was inactivated by metal-chelating compounds (EDTA, 1,10-phenanthroline) and less affected by serine proteinase inhibitors (diisopropylfluorophosphate, phenylmethylsulfonyl fluoride). Proteinase activity was increased by Ca++, Mn++, and Co++, and inhibited by Cu++, Mg++, and Zn++. The activity of this enzyme to hydrolyze casein appeared to be more active on beta-casein than alphas1-casein and kappa-casein as monitored by polyacrylamide gel electrophoresis.  相似文献   

13.
Peptidoglycan hydrolase activities in Lactobacillus delbrueckii subsp. bulgaricus were detected by analysis of bacterial extracts on denaturing polyacrylamide gel electrophoresis containing lyophilized Micrococcus lysodeikticus cells as substrate. A hydrolase with an estimated molecular mass of 80 kDa was found to cross-react on Western blot with monoclonal antibodies raised against muramidase-2 of Enterococcus hirae. These antibodies were also used to demonstrate that the method of cell sample preparation affected protein detection. Slot and Western blots indicate that the peptidoglycan hydrolase from L. bulgaricus is bound to the cell wall. Immuno-labeling followed by optical and electron microscopic observations suggest that this hydrolase is intracellular and restricted mainly to the space between the membrane and the cell wall.  相似文献   

14.
The effect of NaCl substitution with KCl at different pH levels (6.0, 5.5, and 5.0) and salt concentrations on proteinase activities of cell-free and supernatant of Lactobacillus delbrueckii ssp. bulgaricus 11824 (L. bulgaricus) and Streptococcus thermophilus MS (ST) was investigated. MRS broths were separately mixed with 4 salt treatments (NaCl only, 1NaCl:1KCl, 1NaCl:3KCl, and KCl only) at 2 different concentrations (5% and 10%) and incubated at 37 °C for 22 h. The cell pellets were used to prepare proteinase of cell-free extract and the cell-free supernatants were used as source of extracellular proteinases. The proteolytic activities and protein contents of both fractions were determined. The supernatants after incubation of both fractions with 3 milk caseins (α-, β-, κ-casein) were subjected to angiotensin-converting-enzyme inhibitory (ACE-inhibitory) activity and proteolytic activity by ortho-phthalaldehyde (OPA) method. Significant differences were observed in ACE-inhibitory activities and proteolytic (OPA) between salt treatments of cell-free extract and cell-free supernatant of L. bulgaricus and S. thermophilus at same salt concentration and same pH level. There was a significant effect of pH level and salt treatments interaction on ACE-inhibitory activity, OPA activity and azocasein activity. Practical Application: To reduce sodium concentration in cheese by substituting of NaCl with KCl, it was important to study the effect on starter culture proteinases which play a vital role in ripening and texture profile of cheese.  相似文献   

15.
本研究对10株实验室保存的德氏乳杆菌保加利亚亚种产酸能力,产黏能力,产香能力和贮藏期稳定性进行测定,并通过测定乳酸菌对抗生素的耐药性、抑菌能力、β-半乳糖苷酶(β-Gal)活性、α-半乳糖苷酶(α-Gal)活性和乳酸脱氢酶(LDH)活性探究菌株的益生特性.单菌株发酵实验结果表明:菌株KSDB-1凝乳时间短(6.3 h)...  相似文献   

16.
Thirty native (Turkish origin) strains of Streptococcus thermophilus and 24 strains of Lactobacillus delbrueckii ssp. bulgaricus were isolated and identified. These strains were examined for their technologically important properties such as acidification, proteolysis, acetaldehyde production and antimicrobial activity. By taking into consideration their phage resistant properties, two strains of S. thermophilus (St.7.7, and St.26.2) and one of L. bulgaricus, numbered as 2004, were found to have the potential to be starters for yogurt production.  相似文献   

17.
Sixty-three strains of the taxonomically related species Lactobacillus plantarum subsp. plantarum, L. plantarum subsp. argentoratensis, L. paraplantarum and L. pentosus isolated from sourdoughs and other food and non-food sources and 14 strains of other members of the genus Lactobacillus were screened for their tolerance of acid, alkaline, heat, oxidative, osmotic, detergent and starvation stresses in order to evaluate the diversity of stress response. Most strains of the L. plantarum group were highly tolerant of acid, alkaline and osmotic stress and highly sensitive to detergent stress, while a larger diversity was found for other stress. Multivariate analysis allowed grouping the strains in clusters with similar response patterns. Stress response patterns in the L. plantarum group were similar to those of species of the L. casei/L. paracasei group but clearly different from those of other mesophilic Lactobacillus. No relationship was found between grouping obtained on the basis of stress response patterns and by genotypic fingerprinting (rep-PCR), nor with the taxonomic position or isolation source of the strains. Further experiments with selected strains showed that exponential phase cells were generally but not always more sensitive than stationary phase cells. The ability to grow under stressful conditions showed a slightly better correlation with the ecological conditions prevailing in the isolation niches of the strains.This study will be the basis for further investigations to identify and exploit the basis of diversity in the stress response of lactic acid bacteria.  相似文献   

18.
Lactobacillus strains used in this study were isolated from village-type yogurt and raw milk. The isolates were identified as Lactobacillus delbrueckii subsp. bulgaricus by 16 s rDNA sequence analysis and API 50 CHL identification systems. The exopolysaccharide (EPS) production of the strains growth in skim milk were investigated. In addition sensitivity and insensitivity of these strains against domestic bacteriophages and nisin were examined. It was deduced that those strains which had relatively high EPS-producing capacity were insensitive against phages and nisin. Linear relationships were determined between EPS production of the bacteria and bacteriophage and nisin insensitivity of the bacteria.There was a negative correlation between EPS production quantity and phage and nisin sensitivity of the bacteria. Of all the strains, L. delbrueckii subsp bulgaricus B3 produced the highest EPS quantity, and it was insensitive against phages and nisin. Based on these results, it is suggested that L. delbrueckii subsp bulgaricus B3 can be used with the starter culture in dairy industry for stable and high-quality yogurt production.  相似文献   

19.
The protocooperation between Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus relies on metabolite exchanges that accelerate acidification during yogurt fermentation. Conflicting results have been obtained in terms of the effect of the Strep. thermophilus urease and the NH3 and CO2 that it generates on the rate of acidification in yogurt fermentation. It is difficult to perform a systematic study of the effects of urease on protocooperation because it is necessary to distinguish among the direct, indirect, and strain-specific effects resulting from the combination of the strains of both species. To evaluate the direct effects of urease on protocooperation, we generated 3 urease-deficient mutants (ΔureC) of fast- and slow-acidifying Strep. thermophilus strains and observed the effects of NH3 or CO2 supplementation on acidification by the ΔureC strains. Further, we examined 5 combinations of 3 urease-deficient ΔureC strains with 2 CO2-responsive or CO2-unresponsive strains of L. bulgaricus. Urease deficiency induced a shortage of ammonia nitrogen and CO2 for the fast- and slow-acidifying Strep. thermophilus and for the CO2-responsive L. bulgaricus, respectively. Notably, the shortage of ammonia nitrogen had more severe effects than that of CO2 on yogurt fermentation, even if coculture with L. bulgaricus masked the effect of urease deficiency. Our work established (1) that urease deficiency inhibits the fermentative acceleration of protocooperation regardless of the Strep. thermophilus and L. bulgaricus strain combinations, and (2) that urease is an essential factor for effective yogurt acidification.  相似文献   

20.
ABSTRACT:  The effect of high hydrostatic pressure (HHP) (100 to 700 MPa) combined with temperature (20 to 40 °C) on the activity of 5 aminopeptidases (PepN, PepX, PepY, PepC, and PepA) of Lactobacillus delbrueckii ssp. bulgaricus ACA-DC 0105, used as starter culture for feta cheese production, was studied. Aminopeptidases PepN, PepX, and PepA were activated at pressures up to 200 MPa, at temperatures up to 40 °C. PepY and PepC appeared to be more sensitive to pressure and temperature treatment leading to inactivation for pressures above 100 and 200 MPa, respectively, combined with temperature above 30 °C. A multi-parameter equation was used for predicting the activation of PepN, PepX, and PepA aminopeptidases in the pressure and temperature domain. Overall, processing at 200 MPa and 20 °C may be selected as the optimum conditions for maximum activation of 4 out of 5 aminopeptidases of L. delbrueckii ssp. bulgaricus. A 20-min treatment at these conditions leads to an average 3-fold increase in activity, which could lead to better and faster maturation of white cheese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号