首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability of a microorganism to adhere to a solid support and to initiate a colony is often the first stage of microbial infections. To date, studies on S. cerevisiae cell-cell and cell-solid support interactions concerned only cell agglutination during mating and flocculation. Colony formation has not been studied before probably because this species is not pathogenic. However, S. cerevisiae can be a convenient model to study this process, thanks to well-developed genetics and the full knowledge of its nucleotide sequence. A preliminary characterization of the recently cloned essential IRR1 gene indicated that it may participate in cell-cell/substrate interactions. Here we show that lowering the level of expression of IRR1 (after fusion with a regulatory catalase A gene promoter) affects colony formation and disturbs zygote formation and spore germination. All these processes involve cell-cell or cell-solid support contacts. The IRR1 protein is localized in the cytosol as verified by immunofluorescence microscopy, and confirmed by cell fractionation and Western blotting. This indicates that Irr1p is not directly involved in the cell-solid support adhesion, but may be an element of a communication pathway between the cell and its surroundings.  相似文献   

2.
Wine yeasts efficiently convert sugar into ethanol. The possibility of diverting some of the sugar into compounds other than ethanol by using molecular genetic methods was tested. Over-expression of the yeast glycerol 3-phosphate dehydrogenase gene ( GPD2 ) in a laboratory strain of Saccharomyces cerevisiae led to an approximate two-fold increase in the extracellular glycerol concentration. In the medium fermented with the modified strain, acetic acid concentration also increased approximately two-fold when respiration was blocked. A strain deleted for the GPD2 gene had the opposite phenotype, producing lower amounts of glycerol and acetic acid, with the latter compound only reduced during non-respiratory growth. A commercial wine yeast over-expressing GPD2 produced 16.5 g/L glycerol in a wine fermentation, compared to 7.9 g/L obtained with the parent strain. As seen for the laboratory strain, acetic acid concentrations were also increased when using the genetically modified wine yeast. A panel of wine judges confirmed the increase in volatile acidity of these wines. The altered glycerol biosynthetic pathway sequestered carbon from glycolysis and reduced the production of ethanol by 6 g/L.  相似文献   

3.
Increasing glycerol production in low-temperature wine fermentation is of concern for winemakers to improve the quality of wines. The objective of this study was to investigate the effect of 10 different Saccharomyces cerevisiae on the kinetics of production of glycerol, ethanol and the activities of glycerol-3-phosphate dehydrogenase (GPD) and alcohol dehydrogenase (ADH) in low-temperature fermentation. Ethanol production was influenced by temperature, and it was slightly higher at 13 °C than at 25 °C. Glycerol yields were significantly affected by both temperature and strains. More glycerol was produced at 25 °C than at 13 °C because the activity of GPD was higher at 25 °C than at 13 °C. Glycerol production of the different yeast strains was up to 3.19 and 3.18 g L−1 at 25 and 13 °C, respectively. Therefore, isolating the yeast strains with high glycerol production and adaptation to low-temperature fermentation is still the best method in winemaking.  相似文献   

4.
Pab1, the major poly (A) binding protein of the yeast Saccharomyces cerevisiae, is involved in many intracellular functions associated with mRNA metabolism, such as mRNA nuclear export, deadenylation, translation initiation and termination. Pab1 consists of four RNA recognition motifs (RRM), a proline-rich domain (P) and a carboxy-terminal (C) domain. Due to its modular structure, Pab1 can simultaneously interact with poly (A) tails and different proteins that regulate mRNA turnover and translation. Furthermore, Pab1 also influences cell physiology under stressful conditions by affecting the formation of quinary assemblies and stress granules, as well as by stabilizing specific mRNAs to allow translation re-initiation after stress. The main goal of this review is to correlate the structural complexity of this protein with the multiplicity of its functions.  相似文献   

5.
The enzyme glyoxylate reductase reversibly reduces glyoxylate to glycolate, or alternatively hydroxypyruvate to D-glycerate, using either NADPH or NADH as a co-factor. The enzyme has multiple metabolic roles in different organisms. In this paper we show that GOR1 (ORF YNL274c) encodes a glyoxylate reductase and not a hydroxyisocaproate dehydrogenase in Saccharomyces cerevisiae, even though it also has minor activity on alpha-ketoisocaproate. In addition, we show that deletion of the glyoxylate reductase-encoding gene leads to higher biomass concentration after diauxic shift.  相似文献   

6.
In this study, we report the further characterization of the Saccharomyces cerevisiae crystal violet-resistance protein Sge1. Sge1 is a highly hydrophobic 59 kDa protein with 14 predicted membrane-spanning domains. It shares homologies with several drug-resistance proteins and sugar transporters of the major facilitator superfamily. Here, we have demonstrated that Sge1 is not only a crystal violet-resistance protein, but that it also confers resistance to ethidium bromide and methylmethane sulfonate. Disruption of SGE1 leads to increased sensitivity towards all three compounds, thus designating Sge1 as a multiple drug-resistance protein. Subcellular fractionation as well as immunolocalization on whole yeast cells demonstrated that Sge1 was tightly associated with the yeast plasma membrane. Furthermore, Sge1 was highly enriched in preparations of yeast plasma membranes. In analogy to other multidrug-resistance proteins, we suggest that Sge1 functions as a drug export permease. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
Saccharomyces cerevisiae strains carrying snf3 are defective in high affinity glucose transport, and thus are unable to grow fermentatively on media with low concentrations of glucose. A multicopy suppressor of the snf3 growth defect, SKS1 (suppressor kinase of snf3), was found to encode a putative ser/thr protein kinase homologous to Ran1p, a kinase that regulates the switch between meiosis and vegetative growth in Schizosaccharomyces pombe. Overexpression of the SKS1 open reading frame is sufficient for suppression of the growth defects of snf3 mutants. Disruption of the open reading frame eliminates this suppression; as does the mutation of the consensus ATP binding site of Sks1p. A DDSE (DNA dependent snf3 suppressor element) was found to be present in the SKS1 promoter region. The suppression by this DDSE occurs in the absence of SKS1 coding region, that is, the DDSE can suppress a snf3 sks1 double null mutant which fails to grow fermentatively on low glucose as a snf3 mutant does. Both SKS1 and its DDSE can additionally suppress the growth defects of grr1 mutants, which are also impaired in high affinity glucose transport. The snf3 genomic suppressors, rgt1, RGT2 and ssn6, are also capable of suppressing snf3 associated growth defects in a strain lacking sks1.  相似文献   

8.
Gle2/Rae1 is highly conserved from yeast to humans and has been described as an mRNA export factor. Additionally, it is implicated in the anaphase‐promoting complex‐mediated cell cycle regulation in higher eukaryotes. Here we identify an involvement for Saccharomyces cerevisiae Gle2 in septin organization, which is crucial for cell cycle progression and cell division. Gle2 genetically and physically interacts with components of the septin ring. Importantly, deletion of GLE2 leads to elongated buds, severe defects in septin‐assembly and their cellular mislocalization. Septin‐ring formation is triggered by the septin‐regulating GTPase Cdc42, which establishes and maintains cell polarity. Additionally, activity of the master cell cycle regulator Cdc28 (Cdk1) is needed, which is, besides other functions, also required for G2/M‐transition, and in yeast particularly responsible for initiating the apical–isotropic switch. We show genetic and physical interactions of Gle2 with both Cdc42 and Cdc28. Most importantly, we find that gle2? severely mislocalizes Cdc42, leading to defects in septin‐complex formation and cell division. Thus, our findings suggest that Gle2 participates in the efficient organization of the septin assembly network, where it might act as a scaffold protein. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.  相似文献   

9.
The recent isolation and characterization of Tri101 in Fusarium sporotrichioides has led to the functional identification of the yeast open reading frame (ORF) YLL063c, located on chromosome XII of Saccharomyces cerevisiae. The sequence of YLL063c predicts a protein of 474 residues that has 45% identity and 70% similarity to FsTri101. FsTri101 encodes a trichothecene 3-O-acetyltransferase that functions in trichothecene biosynthesis. Feeding studies indicated low levels of C3-OH acetylation in cultures of the laboratory yeast strain, RW2802. No similar activity was found in RW2802 transformed with an integrative plasmid carrying a disrupted YLL063c gene. Based on these results, which show structural and functional similarities between YLL063c and FsTri101, we propose that YLL063c encodes an acetyltransferase capable of trichothecene 3-O-acetylation and have named this gene AYT1. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

10.
The yeast alcohol acetyl transferase I, Atf1p, is responsible for the major part of volatile acetate ester production in fermenting Saccharomyces cerevisiae cells. Some of these esters, such as ethyl acetate and isoamyl acetate, are important for the fruity flavours of wine, beer and other fermented beverages. In order to reveal the subcellular localization of Atf1p and further unravel the possible physiological role of this protein, ATF1::GFP fusion constructs were overexpressed in brewer's yeast. The transformant strain showed a significant increase in acetate ester formation, similar to that of an ATF1 overexpression strain, indicating that the Atf1p-GFP fusion protein was active. UV fluorescence microscopy revealed that the fusion protein was localized in small, sphere-like organelles. These organelles could be selectively stained by the fluorescent dye Nile red, indicating that they contained high amounts of neutral lipids and/or sterols, a specific characteristic of yeast lipid particles. Purification of lipid particles from wild type and ATF1 deletion cells confirmed that the Atf1p-GFP fusion protein was located in these organelles. Furthermore, a clear alcohol acetyl transferase activity could be measured in the purified lipid particles of both wild type and transformed cells. The localization of Atf1p in lipid particles may indicate that Atf1p has a specific role in the lipid and/or sterol metabolism that takes place in these particles.  相似文献   

11.
12.
13.
14.
The synthesis of beta-1,3-glucan, the structural component of the yeast cell wall that gives shape to the cell, occurs at the plasma membrane and is the result of the activity of at least a two-component complex. Fks1p is the catalytic subunit directly responsible for the synthesis of beta-1,3-glucan, whilst the second subunit, Rho1p, has a GTP-dependent regulatory role (Yamochi et al., 1994). RHO1 has been characterized in Saccharomyces cerevisiae (Yamochi et al., 1994), and in several other fungal species. In this work, we have used degenerate oligonucleotides derived from the conserved regions of Rho1ps to isolate the RHO1 gene of Yarrowia lipolytica. The gene isolated in this way, which we have named YlRHO1, encodes a 204 amino acid protein that shows a high degree of homology with other Rho1ps. However, unlike S. cerevisiae, the ylrho1Delta disruptant strain in Y. lipolytica is viable, although it exhibits an increased sensitivity to Calcofluor white and Congo red. Also, YlRHO1 complements rho1 lethality in S. cerevisiae at both 28 degrees C and 37 degrees C. The complete sequence of YlRHO1 can be obtained from GenBank under Accession No. AF279915.  相似文献   

15.
The allantoinase (DAL1) gene of Saccharomyces cerevisiae.   总被引:8,自引:0,他引:8  
  相似文献   

16.
The sequence of the STA1-encoded glucoamylase of amylolytic Saccharomyces cerevisiae (var. diastaticus) strains shows two well-defined regions: an amino-terminal part rich in serine and threonine residues and a carboxy-terminal part very similar to the catalytic domain of other fungal glucoamylases. A version of the enzyme in which most of the amino-terminal region was deleted still has glucoamylase activity, indicating that the remaining carboxy-terminal part forms a functional catalytic domain. Homology-based models of the two parts of the protein have been obtained. As expected, the shortened form of the enzyme is very similar to the catalytic domain of related glucoamylases of known structure. However, the amino-terminal part yielded a structure revealing an unexpected similarity to bacterial invasins, suggesting functional connections between several yeast proteins homologous to STA1-encoded glucoamylase and invasins. A characteristic of Saccharomyces glucoamylase in its native form is its extreme degree of glycosylation. Despite its high molecular mass (about 300 kDa), and in contrast with what occurs with other extracellular glycoproteins produced by yeast, the enzyme does not remain attached to the cell wall, being fully and efficiently secreted into the medium, even when it is produced in large amounts by overexpression of its gene.  相似文献   

17.
NAD(+), an essential molecule involved in a variety of cellular processes, is synthesized through de novo and salvage pathways. NAD(+) synthetase catalyses the final step in both pathways. Here we show that this enzyme is encoded by the QNS1 gene in Saccharomyces cerevisiae. Expression of Escherichia coli or Bacillus subtilis NAD(+) synthetases was able to suppress the lethality of a qns1 deletion, while a B. subtilis NAD(+) synthetase mutant with lowered catalytic activity was not. Overexpression of QNS1 tagged with HA led to elevated levels of NAD(+) synthetase activity in yeast extracts, and this activity can be recovered by immunoprecipitation using anti-HA antibody. An allele of QNS1 was constructed that carries a point mutation predicted to reduce the catalytic activity. Overexpression of this allele, qns1(G521E), failed to elevate NAD(+) synthetase levels and qns1(G521E) could not rescue the lethality caused by the depletion of Qns1p. These results demonstrate that NAD(+) synthetase activity is essential for cell viability. A GFP-tagged version of Qns1p displayed a diffuse localization in both the nucleus and the cytosol. Finally, the rat homologue of QNS1 was cloned and shown to functionally replace yeast QNS1, indicating that NAD(+) synthetase is functionally conserved from bacteria to yeast and mammals.  相似文献   

18.
19.
Energy-metabolism oscillations (EMO) are ultradian biological rhythms observed in in aerobic chemostat cultures of Saccharomyces cerevisiae. EMO regulates energy metabolism such as glucose, carbohydrate storage, O2 uptake, and CO2 production. PSK1 is a nutrient responsive protein kinase involved in regulation of glucose metabolism, sensory response to light, oxygen, and redox state. The aim of this investigation was to assess the function of PSK1 in regulation of EMO. The mRNA levels of PSK1 fluctuated in concert with EMO, and deletion of PSK1 resulted in unstable EMO with disappearance of the fluctuations and reduced amplitude, compared with the wild type. Furthermore, the mutant PSK1Δ showed downregulation of the synthesis and breakdown of glycogen with resultant decrease in glucose concentrations. The redox state represented by NADH also decreased in PSK1Δ compared with the wild type. These data suggest that PSK1 plays an important role in the regulation of energy metabolism and stabilizes ultradian biological rhythms. These results enhance our understanding of the mechanisms of biorhythms in the budding yeast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号