首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A layered filler consisting of Ti3SiC2-SiC whiskers and TiC transition layer was used to join SiCf/SiC. The effects of SiCw reinforcement in Ti3SiC2 filler were examined after joining at 1400 or 1500 °C in terms of the microstructural evolution, joining strength, and oxidation/chemical resistances. The TiC transition layer formed by an in-situ reaction of Ti coating resulted in a decrease in thermal expansion mismatch between SiCf/SiC and Ti3SiC2, revealing a sound joint without cracks formation. However, SiCf/SiC joint without TiC layer showed formation of cracks and low joining strength. The incorporation of SiCw in Ti3SiC2 filler showed an increase in joining strength, oxidation, and chemical etching resistance due to the strengthening effect. The Ti3SiC2 filler containing 10 wt.% SiCw along with the formation of TiC was the optimal condition for joining of SiCf/SiC at 1400 °C, showing the highest joining strength of 198 MPa as well as improved oxidation and chemical resistance.  相似文献   

2.
This study aimed to investigate the toughening effects of SiC nanowires (SiCnw) and SiC whiskers (SiCw) on high-entropy carbide based composites prepared at different temperatures (1600°C and 2000°C). At low temperature (1600°C), SiCnw and SiCw maintain their original morphology and properties, and exhibit the good toughening effects. The SiCnw with larger aspect ratio and more curly wires exhibit a much stronger toughening effect on the (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 composites reinforced with 15 vol.% SiCnw, which shows the highest value of fracture toughness about 6.7 MPa∙m1/2. However, at high sintering temperature (2000°C), SiCnw and SiCw are prone to thermal-induced damages, which significantly reduces their mechanical properties, and thus, toughening effects on (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 composites. The addition of SiCw, which have better thermal stability at 2000°C, results in the (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8–15 vol.% SiCw composite exhibiting relatively better fracture toughness, about 3.7 MPa∙m1/2. Based on the results of the current study, the critical influence of SiCnw and SiCw on the toughening of (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 composites is highly dependent on their high-temperature thermal stability.  相似文献   

3.
To improve the oxidation resistance and alleviate the thermal stress of the HfB2-SiC-Si/SiC coatings for C/C composites, in-situ formed SiC whiskers (SiCw) were introduced into the HfB2-SiC-Si/SiC coatings via chemical vapor deposition (CVD). Effects of SiCw on isothermal oxidation and thermal shock resistance for the HfB2-SiC-Si/SiC coatings were investigated. Results showed that the SiCw-HfB2-SiC-Si/SiC coatings exhibited excellent oxidation resistance for C/C composites with only 0.88% weight loss after oxidation for 468?h at 1500?°C, which was markedly superior to 4.86% weight loss for coatings without SiCw. Meanwhile, after 50 times thermal cycling, the weight loss of the SiCw-HfB2-SiC-Si/SiC coated samples was 4.48%, which showed an obvious decrease compared with that of the HfB2-SiC-Si/SiC coated samples. The SiCw-HfB2-SiC-Si/SiC coatings exhibited excellent adhesion to the C/C substrate and had no penetrating cracks after oxidation. The improved performance of the SiCw-HfB2-SiC-Si/SiC coatings could be ascribed to the SiCw, which effectively relieved CTE mismatch and remarkably suppressed the cracks through toughening mechanisms including whiskers pull-out and bridging strengthening. The above results were confirmed by thermal analysis based on the finite element method, which demonstrated that SiCw could effectively alleviate thermal stress generated by temperature variation. Furthermore, the SiCw-HfB2-SiC-Si/SiC coating can provide a promising fail-safe mechanism during the high temperature oxidation by the formation of HfSiO4 and SiO2, which can deflect cracks and heal imperfections.  相似文献   

4.
Residual thermal stresses in SiC/Ti3SiC2/SiC joining couples were calculated by Raman spectra and simulated by finite element analysis, and then relaxed successfully by postannealing. The results showed that the thermal residual stress between Ti3SiC2 and SiC was about on the order of 1 GPa when cooling from 1300°C to 25°C. The thermal residual stresses can be relaxed by the recovery of structure disorders during postannealing. When the SiC/Ti3SiC2/SiC joints postannealed at 900°C, the bending strength reached 156.9 ± 13.5 MPa, which was almost twice of the as‐obtained SiC/Ti3SiC2/SiC joints. Furthermore, the failure occurred at the SiC matrix suggested that both the flexural strength of joining layer and interface were higher than the SiC matrix.  相似文献   

5.
A pair of Ti3SiC2 reinforced with SiC whiskers (SiCw/Ti3SiC2) composites was successfully joined without any joining materials using electric field-assisted sintering technology at a temperature as low as 1090°C (Ti) and a short time of 30 s. The microstructure and mechanical properties of the obtained SiCw/Ti3SiC2 joints were investigated. The solid-state diffusion was the main joining mechanism, which was facilitated by a relatively high current density (~586 A/cm2) at the joining interface. The shear strength of the sample joined at 1090°C was 51.8 ± 2.9 MPa. The sample joined at 1090°C failed in the matrix rather than at the interface, which confirmed that a sound inter-diffusion bonding was obtained. A rapid and high efficient self-joining process may find application in the case of SiCw/Ti3SiC2 sealing cladding tube and end cap.  相似文献   

6.
《Ceramics International》2017,43(9):6786-6790
As-received and pre-coated SiC whiskers (SiCw)/SiC ceramics were prepared by phenolic resin molding and reaction sintering at 1650 °C. The influence of SiCw on the mechanical behaviors and morphology of the toughened reaction-bonded silicon carbide (RBSC) ceramics was evaluated. The fracture toughness of the composites reinforced with pre-coated SiCw reached a peak value of 5.6 MPa m1/2 at 15 wt% whiskers, which is higher than that of the RBSC with as-received SiCw (fracture toughness of 3.4 MPa m1/2). The surface of the whiskers was pre-coated with phenolic resin, which could form a SiC coating in situ after carbonization and reactive infiltration sintering. The coating not only protected the SiC whiskers from degradation but also provided moderate interfacial bonding, which is beneficial for whisker pull-out, whisker bridging and crack deflection.  相似文献   

7.
Mullite coating, SiC whiskers toughened mullite coating (SiCw-mullite), and cristobalite aluminum phosphate (c-AlPO4) particle modified SiCw-mullite coating (c-AlPO4-SiCw-mullite) were prepared on SiC coated C/SiC composites using a novel sol-gel method combined with air spraying. Results show that molten SiO2 formed by the oxidation of SiC whiskers and molten c-AlPO4 improved the bonding strength between mullite outer coating and SiC–C/SiC composites due to their high-temperature bonding properties. The bonding strength between mullite, SiCw-mullite, c-AlPO4-SiCw-mullite outer coatings and SiC–C/SiC composites were 2.41, 4.31, and 7.38 MPa, respectively. After 48 thermal cycles between 1773 K and room temperature, the weight loss of mullite/SiC coating coated C/SiC composites was up to 11.61%, while the weight losses of SiCw-mullite/SiC and c-AlPO4-SiCw-mullite/SiC coatings coated C/SiC composites were reduced to 7.40% and 5.12%, respectively. The addition of appropriate SiC whiskers can considerably improve the thermal shock resistance of mullite coating owing to their excellent mechanical properties at high temperature. In addition, c-AlPO4 particles can further improve the thermal shock resistance of SiCw-mullite coating due to their high-temperature bonding and sealing properties. No obvious micro-pores and cracks were observed on the surface of c-AlPO4-SiCw-mullite coating after 48 thermal cycles due to timely healing effect by formation of secondary mullite.  相似文献   

8.
Monolithic SiC, for the first time, was successfully joined using a SiC whisker-reinforced Ti3SiC2 composite (SiCw/Ti3SiC2) filler via electric field-assisted sintering technique. A thin Ti coating layer was formed on the SiC surface to minimize the residual stress at the joint interface by transforming it into a TiC gradient layer. After optimizing process parameters, a joint strength higher than 250 MPa was obtained, which is higher than the other values reported in the literature. Failure occurred at the SiC base rather than the joining interface because of the improved joint strength by the incorporation of SiCw. The addition up to 15 wt. % SiCw in the filler layer improved the joint strength by various strengthening mechanisms. On the other hand, the joint strength was lower with 20 wt. % SiCw addition, indicating the importance of thermal expansion mismatch between SiCw and Ti3SiC2 to obtain a sound SiC joint.  相似文献   

9.
The SiC fibers were coated with Ti3SiC2 interphase by dip-coating. The Ti3SiC2 coated fibers were heat-treated from 900 °C to 1100 °C in vacuum and argon atmospheres to comparatively analyze the effect of temperature and atmosphere on the microstructural evolution and mechanical strength of the fibers. The results show that the surface morphology of Ti3SiC2 coating is rough in vacuum and Ti3SiC2 is decomposed at 1100 °C. However, in argon atmosphere, the surface morphology is smooth and Ti3SiC2 is oxidized at 1000 °C and 1100 °C. At 1100 °C, Ti3SiC2 oxidized to form a thin layer of amorphous SiO2 embedded with TiO2 grains. Meanwhile, defects and pores appeared in the interphase scale. As a result, the fiber strength treated in the argon was lower than that treated in vacuum. The porous Ti3SiC2 interphase fabricated under vacuum was then employed to prepare the SiCf/SiC mini composite by chemical vapor infiltration (CVI) combined with precursor infiltration pyrolysis (PIP), and can effectively improve the toughness of SiCf/SiC mini composite. The propagating cracks can be deflected within the porous interphase layer, which promotes fiber pull-outs under the tensile strength.  相似文献   

10.
Coatings with composition close to Ti3SiC2 were obtained on SiC substrates from Ti and Si powders with the molten NaCl method. In this work, the growth of coatings by reaction in the salt between monolithic SiC substrates and titanium powder is obtained between 1000 and 1200 °C. At 1000 °C, a coating of 8 µm thickness is formed in 10 h whereas a thin coating of 0.5 µm has been grown in 2 h. A lack in silicon was first found in the coatings prepared at 1100 and 1200 °C. For these temperatures, the addition of silicon powder in the melt had a favorable effect on the final composition, which is found very close to the composition of Ti3SiC2. The reaction mechanism implies the formation of TiCx layers in direct contact with the SiC substrate and the presence of more or less important quantities of Ti3SiC2 and Ti5Si3Cx in the upper layers.  相似文献   

11.
《Ceramics International》2017,43(18):16128-16135
Ti3SiC2 and Ti4SiC3 MAX phase ceramics were fabricated through high-temperature vacuum reduction of TiO2 using SiC as a reductant, followed by hot pressing of the products under 25 MPa of pressure at 1600 °C. It was found that both Ti3SiC2 and Ti4SiC3 may be obtained in good yields, depending on the annealing time during the reduction step. In addition to MAX phases, the products contained some amounts of TiC. The hot pressing step did not significantly affect the composition of the products, indicating good stability of Ti3SiC2 and Ti4SiC3 under these conditions. Analysis of the densification behavior of the samples revealed lower ductility in Ti4SiC3 compared to Ti3SiC2. The samples prepared herein exhibited the flexural strength, fracture toughness and microhardness typical of coarse-grained MAX-phase ceramics.  相似文献   

12.
《Ceramics International》2016,42(7):8376-8384
TiB2–TiC–Ti3SiC2 porous composites were prepared through a plasma heating reaction using powder mixtures of Ti, B4C SiC whiskers (SiCw) and SiC particles (SiCp). The effects of the SiCw and SiCp content on pore structures, phase constituents, microstructure, and crystal morphology of TiC were studied. The results show that TiC, TiB, Ti3B4 phases are formed within the 5Ti+B4C system. With the addition of SiCw and SiCp, the TiB and Ti3B4 phases are reduced, sometimes even disappeared. Interestingly, the content of TiB2 and TiC increased, resulting in Ti3SiC2 and TiSi2 being formed. The porosity of composites increases notably with the addition of SiCw. However, with the increase of SiCp, the porosity of the composites first decreases, followed by an increase. After adding the specified amount of SiCw/SiCp, the compressive strength of composites are improved significantly. Additionally, the pore size of the composites are decreased significantly with the addition of SiCw/SiCp. During the plasma heating process, some Si atoms will diffuse into the TiC lattice, which in turn made the cubic TiC grains into hexagonal lamellar TiC or Ti3SiC2 grains.  相似文献   

13.
Dense Ti3SiC2-SiC, Ti4SiC3-SiC, and Ti3SiC2-Ti4SiC3-SiC ceramic composites were fabricated through carbosilicothermic reduction of TiO2 under vacuum, followed by hot pressing of the as-synthesized products under 25 MPa at 1600°C. In the reduction step, SiC either alone or in combination with elemental Si was used as a reductant. A one-third excess of SiC was added in the reaction mixtures in order to ensure the presence of approximately 30 vol.% SiC in the products of synthesis. During the hot pressing step, the samples that contained Ti3SiC2 showed better densification compared to those containing Ti4SiC3. The obtained composites exhibited the strength properties typical of coarse-grained MAX-phase ceramics. The flexural strength values of 424 and 321 MPa were achieved in Ti3SiC2-SiC, and Ti3SiC2-Ti4SiC3-SiC composites, respectively. The fracture toughness values were 5.7 MPa·m1/2.  相似文献   

14.
《Ceramics International》2022,48(8):10688-10692
This work reported an in-situ vapor-liquid-solid (VLS) preparation method of SiC whiskers (SiCw) catalyzed by Fe-oxides on carbon fibers, which could provide a method for preparing SiCw/carbon fiber composites. The mechanism of the SiCw was theoretically designed and then experimentally validated using XRD, SEM, and TEM. Fe2O3 was chosen as a Fe-oxide catalyst and directly loaded on carbon fibers by the impregnation process. The results showed that SiCw were successfully prepared on carbon fibers at 1600 °C under the protection of flowing nitrogen, utilizing quartz and graphite as gas-phase generation sources. The prepared SiCw were β-SiC and grew along the (111) crystal plane, with spherical droplets on top formed by Fe2O3 catalysts. SiCw were microstructurally observed to have widths of 500–1000 nm and lengths of more than 15 μm, respectively.  相似文献   

15.
The compressive creep of a SiC whisker (SiCw) reinforced Ti3SiC2 MAX phase-based ceramic matrix composites (CMCs) was studied in the temperature range 1100-1300°C in air for a stress range 20-120 MPa. Ti3SiC2 containing 0, 10, and 20 vol% of SiCw was sintered by spark plasma sintering (SPS) for subsequent creep tests. The creep rate of Ti3SiC2 decreased by around two orders of magnitude with every additional 10 vol% of SiCw. The main creep mechanisms of monolithic Ti3SiC2 and the 10% CMCs appeared to be the same, whereas for the 20% material, a different mechanism is indicated by changes in stress exponents. The creep rates of 20% composites tend to converge to that of 10% at higher stress. Viscoplastic and viscoelastic creep is believed to be the deformation mechanism for the CMCs, whereas monolithic Ti3SiC2 might have undergone only dislocation-based deformation. The rate controlling creep is believed to be dislocation based for all the materials which is also supported by similar activation energies in the range 650-700 kJ/mol.  相似文献   

16.
Homogenous distribution of whiskers in the ceramic matrix is difficult to be achieved. To solve this problem, B4C-SiCw powder mixtures were freeze dried from a slurry dispersed by cellulose nanofibrils (CellNF) in this work. Dense B4C ceramics reinforced with various amounts of SiCw up to 12 wt% were consolidated by spark plasma sintering (SPS) at 1800 °C for 10 min under 50 MPa. During this process, CellNF was converted into carbon nanostructures. As iron impurities exist in the starting B4C and SiCw powders, both thermodynamic calculations and microstructure observations suggest the dissolution and precipitation of SiCw in the liquids composed of Fe-Si-B-C occurred during sintering. Although not all the SiCw grains were kept in the final ceramics, B4C-9 wt% SiCw ceramics sintered at 1800 °C still exhibit excellent Vickers hardness (35.5 ± 0.8 GPa), flexural strength (560 ± 9 MPa) and fracture toughness (5.1 ± 0.2 MPa·m1/2), possibly contributed by the high-density stacking faults and twins in their SiC grains, no matter in whisker or particulate forms.  相似文献   

17.
Polycrystalline bulk samples of (Ti1-yMey)3SiC2, where Me=Fe or V and y=0.01 to 0.1, were fabricated by reactive hot isostatic pressing of a mixture of Ti, C (graphite), SiC and Fe or V at 1450°C for 4 h under a pressure of 60 MPa. X-ray diffraction and scanning electron microscopy of the fully dense samples have shown that small amounts of Fe and V interfere with the reaction between Ti, C and SiC leading to the presence of SiC, TiCx, as well as different Fe and V-containing phases in the final microstructures. The presence of these impurity phases also reduces the temperature at which Ti3SiC2 decomposes. The decomposition is manifested by the formation of a network of pores when the samples are annealed at 1600°C, a temperature at which pure Ti3SiC2 is thermally stable. The concentration threshold for this decomposition is as low as 1 at%.  相似文献   

18.
The mullite and ytterbium disilicate (β-Yb2Si2O7) powders as starting materials for the Yb2Si2O7/mullite/SiC tri-layer coating are synthesized by a sol–gel method. The effect of SiC whiskers on the anti-oxidation properties of Yb2Si2O7/mullite/SiC tri-layer coating for C/SiC composites in the air environment is deeply studied. Results show that the formation temperature and complete transition temperature of mullite were 800–1000 and 1300°C, respectively. Yb2SiO5, α-Yb2Si2O7, and β-Yb2Si2O7 were gradually formed between 800 and 1000°C, and Yb2SiO5 and α-Yb2Si2O7 were completely transformed into β-Yb2Si2O7 at a temperature above 1200°C. The weight loss of Yb2Si2O7/(SiCw–mullite)/SiC tri-layer coating coated specimens was 0.15 × 10−3 g cm−2 after 200 h oxidation at 1400°C, which is lower than that of Yb2Si2O7/mullite/SiC tri-layer coating (2.84 × 10−3 g cm−2). The SiC whiskers in mullite middle coating can not only alleviate the coefficient of thermal expansion difference between mullite middle coating and β-Yb2Si2O7 outer coating, but also improve the self-healing performance of the mullite middle coating owing to the self-healing aluminosilicate glass phase formed by the reaction between SiO2 (oxidation of SiC whiskers) and mullite particles.  相似文献   

19.
By coating active titanium, Sn0.3Ag0.7Cu (SAC) filler wetted SiC effectively, as the contact angle decreased significantly from ~145° to ~10°. Ti3SiC2 and TiOx (x ≤ 1) reaction layers were formed at the droplet/SiC interface, leading to the reduction of contact angle. Reliable brazing of SiC was achieved using titanium deposition at 900°C for 10 minutes, and the typical interfacial microstructure of Ti-coated SiC/SAC was SiC/TiOx + Ti3SiC2/Sn(s,s). Comparing to direct brazing, Ti–Sn compounds in the brazing seam were effectively reduced and the mechanical property of joints was dramatically improved by titanium coating. The optimal average shear strength of SiC joints reached 25.3 MPa using titanium coating- assisted brazing, which was ∼62% higher than that of SiC brazed joints using SAC-Ti filler directly.  相似文献   

20.
The in-situ formed SiC/Al4SiC4 joining layer was used to join monolithic SiC using an electric field-assisted sintering technique. A multiphase powder of Al4C3/SiC/Al4SiC4 was used as the initial joining material to obtain the in-situ reaction layer of SiC/Al4SiC4 via the appropriate interface reactions. The bending strength as high as 240.5 ± 6.6 MPa was obtained for the sample joined at 1800 °C, which was higher than the strength of the un-joined SiC matrix. Sound joints were obtained when Al4C3 was completely transformed to Al4SiC4, and a fully dense SiC/Al4SiC4 joining layer was consolidated. The integration of the joining layer with the SiC matrix was improved by a high amount of liquid phase formed at the interface. The proposed SiC/Al4SiC4 joining layer, with good thermal matching with SiC matrix, shows a great potential to be applied as a joining material for SiC-based ceramic matrix composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号