首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
First-principles calculations were performed to examine defect formation energies and site preference of substitutional divalent cations M2+ (M = Mg, Cu, Zn, Cd, Sr, Pb, and Ba) in hydroxyapatite (HAp, Ca10(PO4)6(OH)2) and carbonated apatite (CAp). All inequivalent substitutional sites of and M2+ were investigated to determine their most preferential sites. For all M2+ studied, their defect formation energies for the most stable substitutional sites were lower in CAp than in hydroxyapatite (HAp), demonstrating that M2+ are preferentially substituted into CAp over HAp. For Ca sites in CAp, correlations between the defect formation energies and Ca-O bond lengths showed that bigger and smaller M2+ than Ca2+ are preferentially substituted for Ca sites with longer and shorter bond lengths than those in HAp, respectively. In addition, Ca sites with lower coordination numbers than 6 are preferentially substituted by Zn2+ and Cu2+ that originally tend to form 4- or 5-fold coordination in their phosphate crystals. substitution is therefore likely to effectively stabilize substitutional foreign ions by modifying bond lengths and coordination numbers of Ca sites from those in pure HAp. These effects may play an important role in enhancing the M2+ solubility into CAp.  相似文献   

2.
《Ceramics International》2022,48(10):13719-13731
Li0.04Ca0.96-xSiO3:Smx orange?red emitting phosphors were synthesized using the sol-gel method. X-ray diffraction, Rietveld refinement of XRD patterns, Fourier transform infrared spectroscopy and ?uorescence spectrophotometry were used to characterize the crystal structure, sites of cationic Ca and luminescence properties of the prepared phosphors. The relationship of the different Ca sites in the matrix with the luminescence properties was analysed. The results indicate that the prepared phosphors reveal a β-CaSiO3 phase with a monoclinic crystal structure and space Group P21/a. As the Sm3+ concentration increases, the unit cell volume of phosphors and the Ca–O band lengths of different Ca sites decrease due to substitution of Ca2+ by smaller Sm3+ ions. By excitation at 404 nm, Li0.04Ca0.96-xSiO3:Smx phosphors exhibit warm orange?red light, corresponding to the electron transitions from 4G5/2 → 6H5/2 (567 nm), 4G5/2 → 6H7/2 (605 nm) and 4G5/2 → 6H9/2 (651 nm) of Sm3+. The concentration quenching phenomenon appears at Sm3+ concentrations beyond 0.02. The refinement results demonstrate that three cationic Ca sites, named Ca1, Ca2 and Ca3, exist in the β-CaSiO3 host lattice. The Ca2+ ions at Ca1 and Ca2 sites are coordinated with six oxygen ions, leading to the same coordination number (CN). The Ca2+ ion located at Ca3 site has seven coordination numbers. The Ca1 site possesses a smaller lattice distortion and better symmetry than those of Ca2 and Ca3 sites. However, the Ca3 site exhibits the largest lattice distortion and poor symmetry. The Sm3+ present in symmetric Ca1 sites in the matrix illustrates the strong emission intensity, long luminescence lifetimes and good thermal stability.  相似文献   

3.
Yb3+/Er3+codoped La10W22O81 (LWO) nanophosphor rods have been successfully synthesized by a facile hydrothermal assisted solid state reaction method, and their upconversion photoluminescence properties were systematically studied. X-ray diffraction patterns revealed that the nanophosphors have an orthorhombic structure with space group Pbcn (60). A microflowers-like morphology with irregular hexagonal nanorods was observed using field emission scanning electron microscopy for the Yb3+(2 mol%)/Er3+(2 mol%):LWO nanophosphor. The shape and size of the nanophosphor and the elements along with their ionic states in the material were confirmed by TEM and XPS studies, respectively. A green upconversion emission was observed in the Er3+: LWO nanophosphors under 980 nm laser excitation. A significant improvement in upconversion emission has been observed in the Er3+: LWO nanophosphors by increasing the Er3+ ion concentration. A decrease in the upconversion emission occurred due to concentration quenching when the doping concentration of Er3+ ions was greater than 2 mol%. An optimized Er3+(2 mol%): LWO nanophosphor exhibited a strong near infrared emission at 1.53 μm by 980 nm excitation. The green upconversion emission of Er3+(2 mol%): LWO was remarkably enhanced by co-doping with Yb3+ ions under 980 nm excitation because of energy transfer from Yb3+ to Er3+. The naked eye observed this upconversion emission when co-doping with 2 mol% Yb3+. In order to obtain the high upconversion green emission, the optimized sensitizer concentration of Yb3+ ions was found to be 2 mol%. The upconversion emission trends were studied as a function of stimulating laser power for an optimized sample. Moreover, the NIR emission intensity has also been enhanced by co-doping with Yb3+ ions due to energy transfer from Yb3+ to Er3+. The energy transfer dynamics were systematically elucidated by energy level scheme. Colorimetric coordinates were determined for Er3+ and Yb3+/Er3+: LWO nanophosphors. The energy transfer mechanism was well explained and substantiated by several fluorescence dynamics of upconversion emission spectra and CIE coordinates. The results demonstrated that the co-doped Yb3+(2 mol%)/Er3+(2 mol%): LWO nanophosphor material is found to be a suitable candidate for the novel upconversion photonic devices.  相似文献   

4.
A novel cross-linked polyzwitterion (CPZ) was synthesized via cycloterpolymerization of N,N-diallyl-N-sulfopropylammonioethanoic acid (92.5 mol%), a cross-linker 1,1,4,4-tetraallylpiperazinium dichloride (7.5 mol%), and sulfur dioxide (100 mol%) in the presence of azoisobutyronitrile in dimethylsulfoxide at 60 °C. CPZ, upon treatment with NaOH, was converted into a cross-linked polyzwitterion/anion (CPZA). The experimental data for the adsorption of Sr2+ on CPZA fitted the pseudo-second-order kinetic model and Freundlich as well as Temkin isotherm models. The adsorption process was spontaneous and exothermic in nature with negative values for both ΔG and ΔH. The low activation energy of 7.18 kJ/mol indicated the adsorption as a favorable process. The removal for the initial concentrations of 200 ppb and 1000 ppb (i.e., 1 ppm) of Sr2+ ions was observed to be 87% and 92%, respectively. An efficient synthetic access to the resin and excellent adsorption capacity and desorption would enable its use in the treatment of radioactive nuclear waste containing Sr2+ ions. The CPZA provided an opportunity to test the efficacy of a zwiiterionic/anionic group in the removal of Sr2+ ions in low concentrations.  相似文献   

5.
A series of Zn, Ni and Fe containing hydrotalcite-like compounds with various M2+/M3+ ratios were synthesized by co-precipitation method at pH = 10. The products were characterized by XRD, SEM, TG-DTA, FTIR, CO2-TPD and N2 adsorption/desorption techniques. The results showed that M2+/M3+ ratio affected the formation of hydrotalcite crystal seriously. The precursors with M2+/M3+ mole ratio of 2 and 3 showed pure hydrotalcite phase. After calcination at 250 °C, the derived oxides with larger surface area and more basic sites were obtained. Desulfurization tests showed that the Zn–Ni–Fe hydrotalcite-derived oxide exhibited an excellent activity in low temperature hydrolysis of COS. The optimum M2+/M3+ mole ratio was 3.  相似文献   

6.
《Ceramics International》2016,42(9):11099-11103
Tb3+ions activated Ba4La6O(SiO4)6 (BLSO:Tb3+) phosphors were synthesized by a citrate sol-gel method. The X-ray diffraction pattern confirmed their oxyapatite structure. The field-emission scanning electron microscope image established that the BLSO:Tb3+phosphor particles were closely-packed and acquired irregular shapes. The photoluminescence (PL) excitation spectra of BLSO:Tb3+phosphors showed intense f–d transitions along with low intense peaks corresponding to the f–f transitions of Tb3+ions in the lower energy region. The PL emission spectra displayed the characteristic emission bands of Tb3+ions, and the optimized concentrations were found to be at 1 and 6 mol% for blue and green emission peaks, respectively. The cathodoluminescece (CL) spectra exhibited a similar behavior that was observed in the PL spectra except the intensity variations in the blue and green regions. The CL spectra of the BLSO:6 mol% Tb3+phosphor unveiled accelerating voltage induced luminescent properties.  相似文献   

7.
A growing demand for white light-emitting diodes (W-LEDs) gives rise to continuous exploration of functional fluorescence glasses. In this paper, Tm3+/Dy3+ single- and co-doped glasses with composition (in mol%) of 30P2O5–10B2O3–23SrO–37K2O were synthesized using the melt-quenching method in air. The physical properties, glass structure, luminescence characteristics and energy transfer mechanism of the glasses were systematically studied. As glass network modifiers, Tm3+ and Dy3+ ions can densify the glass structure. Excitation wavelength and doping concentration of Tm3+/Dy3+ ions have a direct impact on the emission intensities of blue and orange light as well as the color coordinate of the as-prepared glasses. A white light very close to standard white light can be obtained under 354 nm excitation when the content of Tm3+ and Dy3+ is 0.2 mol% and 1.0 mol%, respectively. The results of the emission spectra and decay curves reveal the existence of energy transfer from Tm3+ to Dy3+. The analytic results based on the Inokuti-Hirayama model indicate that the electrical dipole-dipole interaction may be the main mechanism of energy transfer. Moreover, Tm3+/Dy3+ co-activated glass phosphor has good thermal stability and chrominance stability and it is a promising candidate for white LEDs and display device.  相似文献   

8.
《Ceramics International》2020,46(10):15779-15785
In this work, we investigate the synthesis of LiGa5O8 ceramic powders through a polyvinyl alcohol-based sol-gel technique and their optical properties when doped with high Cr3+ concentrations (5, 25 and 50 mol% with respect to the Ga3+ sites). The results indicate that the main crystalline phase, LiGa5O8, is obtained after calcining the samples at 1000 °C/2 h in a static air atmosphere. Via X-ray photoelectron spectroscopy, Cr is confirmed to exist in its trivalent oxidation state and the evaluation of the optical properties is performed via photoluminescence excited from visible to vacuum ultraviolet energy range and with X-ray excited optical luminescence, indicating the typical Cr3+ emission at the near-infrared energy range. The crystal field and Racah parameters are calculated and the influence of Cr3+ concentration in the host material indicates luminescence suppression/quenching and a redshift for a higher amount of these ions.  相似文献   

9.
《Ceramics International》2023,49(15):25333-25343
Smart nano-composites Phospho-silicate (SiO2–P2O5) prepared in monolith form containing 16 mol% P2O5, and doped with different mol% of Er3+ ions between 0.5 and 5 mol%; the composite has been synthesized by Sol-Gel technique, and subsequently annealed at 850 °C.X-ray diffraction patterns show the structural properties of the mentioned prepared samples, giving rise to the crystallite sizes to increase in a range between 18, and 20.8 nm as the molar percent of the Er3+ ion increase from 0% to 5%. The morphology, and surface morphology of the prepared samples were characterized using TEM, and FESEM, respectively. The Raman analyses show that the active Raman bands are corresponding to silicate, and phosphate. These bands were enveloped by the strong asymmetric vibrations of Er2O3 at 420, and 840 cm−1, their Bose-Einstein corrected intensities increased gradually by increasing the Er3+ ions concentration in the regions from 3400 up to 3450 cm−1, and 3550 up to 3700 cm−1. The optical studies show that the refractive index increased by increasing Er3+ ions concentration, from 1.7 up to 1.8 for as the concentration of Er3+ ions increase. The photoluminescence are exhibiting an emission with splitting at 1545, and 1555 nm, which is related to the intra 4F transition. It has been found that the optimal doping content of Er is 1 mol% then, after quenching caused by OH groups in Er3+ ions doped Phospho-silicate at higher concentrations. It is obviously that 1 mol% of Erbium ions is a suitable candidate for photonic applications such as Laser waveguide, and optical amplifier.  相似文献   

10.
《Ceramics International》2016,42(9):10764-10769
Nanocrystalline undoped LiNbO3 and LiNbO3 doped with x% Fe (x=0.5, 1, 2, 3, 5) were synthesized via a combustion method. Fe-doped LiNbO3 with a 1 mol% doping concentration exhibited a room-temperature ferromagnetism of 0.06 emu/g. There was an abrupt change in properties when the doping concentration of Fe reached 2 mol%, where the lattice contracted obviously and the saturation magnetization (Ms) increased an order of magnitude to 0.275 emu/g; Ms slightly increased to its maximum value of 1.18 emu/g when the doping concentration was further increased to 5 mol%. Raman spectra showed that the substitution of Li by Fe occurred at small doping concentrations and the substitution of Nb at the Nb site occurred at higher doping concentrations. The results suggest that Fe3+ replaced NbLi4+ first and the weaker ferromagnetism is due to the minor fraction of NbLi4+ in LiNbO3. Then, Fe3+ substituted Li+, resulting in large lattice distortion and much stronger spin coupling of Fe–Nb. Finally, the excess Fe3+ started to replace Nb5+at the Nb sites, where the spin coupling of Fe–Nb is weaker than that at the Li site. An analysis of the experimental results suggests that the congruent Fe-doped LiNbO3 is a promising room-temperature single-phase multiferroic material.  相似文献   

11.
Germanate glasses have potential applications as optical fibers. Materials doped with rare earth ions are good candidates for optical, lasing, and magnetic applications. Based on the ternary system, CeO2–Na2O–GeO2 a series of six glasses were fabricated using powder fusion, and varying the Na2O content from 0 to 45 mol%, and a CeO2 content constant at 3 mol%. The glasses were analyzed by FT‐IR, Raman and X‐ray photoelectron (XPS) spectroscopies to obtain information about the glass structure, cerium oxidation's state and how it is introduced in the glass network. FT‐IR and Raman spectra revealed the presence of GeO6 and GeO4 groups as well as Q2 and Q3 units in the glasses with alkali low content. XPS spectra analysis revealed that the cerium ions were reduced from Ce4+ to Ce3+. The nonbonding to total oxygen ratio was estimated from the curve fitting of the O 1s core level spectra. Density and elastic parameters showed a nonlineal tendency in the change of the physical properties as a function of Na2O content. Finally, photoluminescence spectroscopy confirmed the presence of Ce3+ ions. The characteristic 4f → 5d electronic transitions at 360 nm were detected, when a 280 nm excitation line of pulsed laser was used as excitation source.  相似文献   

12.
TiO2 has been widely used in catalysis because of its superior catalytic properties. The enhancement of catalytic performance can generally be achieved through doping. In the present study, Zn-doped TiO2 nanoparticles (at a Zn doping level of 2.5, 5, and 10 mol%) were synthesized by the solution combustion technique and characterized to examine their potential usage in sensor applications. The bandgap energies and electrocatalytic activities of the synthesized nanoparticles were microstructurally investigated. The results revealed the presence of anatase nanoparticles with average sizes of 9–14 nm, which agglomerated into clusters with sizes in the range of 78–107 nm. The Zn concentrations did not significantly affect the chemical compositions, but the particles exhibited slight refinement with an increase in the Zn dopant. Narrower bandgaps were observed in the nanoparticles with higher Zn concentrations. The electrocatalytic activities were evaluated by cyclic voltammetry and found that TiO2 nanoparticles with 2.5 mol% Zn had the most prominent activities. Sensitivity, measured in glutamate solutions with concentrations between 0.001 and 1000 mM ranged from 2.47 to 7.20 × 10?6 mA mM?1 cm?2, which were comparable with those reported by other researchers. The TiO2 nanoparticles with 2.5 mol% Zn exhibited fair selectivity and reusability. The oxidation peak current degraded by 12.5%, after 200 cycles of measurement in glutamate solution. The results suggested that TiO2 nanoparticles doped with 2.5 mol% Zn are potential candidates for glutamate-sensing applications.  相似文献   

13.
Glass for pharmaceutical packaging requires high chemical durability for the safe storage and distribution of newly developed medicines. In borosilicate pharmaceutical glasses which typically contain a mixture of different modifier ions (alkali or alkaline earth), the dependence of the chemical durability on alkaline earth oxide concentrations is not well understood. Here, we have designed a series of borosilicate glasses with systematic substitutions of CaO with MgO while keeping their total concentrations at 13 mol% and a fixed Na2O concentration of 12.7 mol%. We used these glasses to investigate the influence of R = [MgO]/([MgO] + [CaO]) on the resistance to aqueous corrosion at 80°C for 40 days. It was found that this type of borosilicate glass undergoes both leaching of modifier ions through an ion exchange process and etching of the glass network, leading to dissolution of the glass surface. Based on the concentration analysis of the Si and B species dissolved into the solution phase, the dissolved layer thickness was found to increase from ~100 to ~170 nm as R increases from 0 to 1. The depth profiling analysis of the glasses retrieved from the solution showed that the concentration of modifier ions (Na+, Ca2+, and Mg2+) at the interface between the solution and the corroded glass surface decreased to around 40%–60% of the corresponding bulk concentrations, regardless of R and the leaching of modifier cations resulted in a silica-rich layer in the surface. The leaching of Ca2+ and Mg2+ ions occurred within ~50 and <25 nm, respectively, from the glass surface and this thickness was not a strong function of R. The leaching of Na+ ions varied monotonically; the thickness of the Na+ depletion layer increased from ~100 nm at R = 0 to ~200 nm at R = 1. Vibrational spectroscopy analysis suggested that the partial depletion of the ions may have caused some degree of the network re-arrangement or re-polymerization in the corroded layer. Overall, these results suggested that for the borosilicate glass, replacing [CaO] with [MgO] deteriorates the chemical durability in aqueous solution.  相似文献   

14.
《Ceramics International》2022,48(14):20467-20477
Bioactive ceramics such as tricalcium phosphate (TCP) doped with metal ions are often used to replace natural bone in orthopedic and dental function, both in structural and coating applications. Although the addition of different ions to TCP has been correlated with improved mechanical performance, as well as pro-osteogenic and osteointegrative biological activities, the effect of combining different ions in single biomaterial formulations is poorly described. Here, design of experiments (DoE) was used to assess the effect of the addition of three metallic ions - Mn2+, Zn2+ and Fe3+ - to TCP doped with 10 mol% Mg2+, in combinations comprising one, two and three ions with varying ratios. Our results showed that the TCP could be doped by combinations of metallic ions and β-TCP and hydroxyapatite constitute the main crystalline phases. Additionally, the simultaneous effect of metal ions influenced the structural and physical properties of the TCP composite. Overall, for up 1 mol% of Mn2+, up to 3.75 mol% of Zn2+ and more than 2 mol% of Fe3+, compositions 2 and 6, a dense microstructure and good defined grain boundaries improve the mechanical properties. Furthermore, the ion-doped TCP composites, namely the one prepared from equal amounts of substituting ions besides Mg2+, did not elicit a cytotoxic effect indicating that these materials could be of interest for tissue engineering applications.  相似文献   

15.
In the paper, the upconversion luminescence of 70GeO2–30[Ga2O3–BaO–Na2O] glass system co-doped with Yb3+/Tm3+ ions was investigated. Strong blue emission at 478 nm corresponding to the transition 1G4 → 3H6 in thulium ions was measured under the excitation of 976-nm diode laser. The dependence of the upconversion emission upon the thulium ion concentration was studied to determine the optimal conditions of energy transfer between energy levels of active dopants. The most effective energy transfer Yb3+ → Tm3+ was obtained in glass co-doped with molar ratio of dopant 0.7 Yb2O3/0.07 Tm2O3. The increase in thulium concentration more than 0.07 mol% results in the reverse energy transfer from Tm3+ → Yb3+, which leads to rapid quenching of the luminescence line at the wavelength 478 nm. In germanate glass co-doped with 0.7Yb2O3/0.07Tm2O3, the longest lifetime of 1G4 level equal 278 μs was achieved. The presented results indicate that elaborated germanate glass co-doped with Yb3+/Tm3+ ions is a promising material that can be used to produce fiber lasers and superluminescent fiber sources generating radiation in the visible spectrum.  相似文献   

16.
《Ceramics International》2022,48(11):15791-15799
With the aim to understand electric polarization mechanisms of β-tricalcium phosphate as an advanced biomaterial, Na ion-substituted β-Ca3(PO4)2 (Na-β-TCPs) ceramics with controlled lattice vacancies were synthesized and structural refinement was performed by the Rietveld method. The Rietveld analysis revealed that Ca and vacancies at Ca(4) sites in the β-TCP structure decreased with an increase in Na substitution. Electrical measurements by the complex impedance method revealed that the conductivity and the activation energy calculated from Cole-Cole plots rapidly decreased to a constant value with an increase in Na substitution and decrease in vacancies. The thermally stimulated depolarization current (TSDC) curve of the electrically polarized Na-β-TCP showed one large peak at 530–610 °C. However, the accumulated charge decreased with an increase in Na ions and decrease in vacancies up to 2.37 mol%, after which it became constant. These results are consistent with the presumed formation of a dipole moment between aligned Ca2+ ions and their vacancies along the direction of the external polarization field applied at high temperature. We conclude that the large amount of stored charge in β-TCP caused by electrical polarization is due to the low site occupancy of calcium ions and vacancies at Ca(4) sites in the β-TCP structure, which is not the case for hydroxyapatite (HAp), as previously reported.  相似文献   

17.
BiFe1−xZnxO3 (x = 0, 0.5, 1, 1.5, 2 mol%) (BFZO) films were prepared on ITO/glass substrates by a sol-gel method. The effects of different Zn contents on the structures and electrical properties of the BFZO films were investigated. From X-ray diffraction (XRD), microstructure and X-ray spectroscopy (XPS) results, the BFZO films with a Zn content of 1 mol% showed a better crystal structure and grain development, and the Fe2+ and oxygen vacancy concentrations in this sample were the lowest among all the evaluated BFZO films. The P-E hysteresis loop indicated that the BFZO films with 1 mol% Zn had the highest remanent polarization (2Pr), which was 82.4 μC/cm2, along with a coercive field (2Ec) of 887 kV/cm at the tested electric field of 857 kV/cm. The BFZO film with 1 mol% Zn had the lowest leakage current density, which was 3.54 × 10−7 A/cm2 at the tested electric field of 200 kV/cm. Both at high and low electric fields, the space charge-limited current (SCLC) conduction mechanism was the main leakage mechanism. When the test frequency was 105 Hz, the dielectric constant was 133, and the dissipation factor was 0.015.  相似文献   

18.
《Ceramics International》2022,48(3):3609-3614
This work investigated the effect of replacing Zn2+ ions with Cd2+ ions on the microstructure and electromagnetic properties of NiZnCo ferrites. The studies show that the Cd2+ ions substituted for Zn2+ ions at the A sites (tetrahedral sites) of the ferrite lattice. The large ionic radius of the Cd2+ ions can cause lattice distortion. Concurrently, the low melting point of CdO can effectively reduce the sintering temperature of NiZnCo ferrite, thereby significantly changing the magnetoelectric properties of NiZnCo ferrite. These changes are mainly manifested as the decrease in the saturation magnetization (Ms) from 66.6 to 58.5 emu/g and the increase in coercivity (Hc) from 31.2 to 34.8 Oe. The dielectric constant increases considerably, dielectric loss tanδ gradually decreases from 4.71 to 0.83 at 10 kHz, and DC resistivity ρ decreases considerably from 8.0 × 104 to 1.61 × 104 Ω m. Therefore, the substitution of Cd2+ ions in NiZnCo ferrite provides excellent electrical and magnetic properties, which provide a reference for the development of high-frequency miniaturized electronic equipment.  相似文献   

19.
Eu3+‐activated borogermanate scintillating glasses with compositions of 25B2O3–40GeO2–25Gd2O3–(10?x)La2O3xEu2O3 were prepared by melt‐quenching method. Their optical properties were studied by transmittance, photoluminescence, Fourier transform infrared (FTIR), Raman and X‐ray excited luminescence (XEL) spectra in detail. The results suggest that the role of Gd2O3 is of significance for designing dense glass. Furthermore, energy‐transfer efficiency from Gd3+ to Eu3+ ions can be near 100% when the content of Eu2O3 exceeds = 4, the corresponding critical distance for Gd3+–Eu3+ ion pairs is estimated to be 4.57 Å. The strongest emission intensities of Eu3+ ions under both 276 and 394 nm excitation are simultaneously at the content of 8 mol% Eu2O3. The degree of Eu–O covalency and the local environment of Eu3+ ions are evaluated by the value of Ωt parameters from Judd–Ofelt analysis. The calculated results imply that the covalency of Eu–O bond increases with the increasing concentration of Eu3+ ions in the investigated borogermanate glass. As a potential scintillating application, the strongest XEL intensity under X‐ray excitation is found to be in the case of 6 mol% Eu2O3, which is slightly different from the photoluminescence results. The possible reason may be attributed to the discrepancy of the excitation mechanism between the ultraviolet and X‐ray energy.  相似文献   

20.
A yellow inorganic ceramic pigment with general formula Y1.86?xMxTb0.14O3?x/2 (M = Ca and/or Zn) with x = 0.06, 0.32 and 0.64 were synthesized by a modified Pechini method. XRD, SEM and HRTEM/EDX analysis showed the formation of solid solution at 1300 °C when x = 0.06 and 0.32. The best b* yellow coordinates were obtained for Ca and Zn co-doped Y1.86Tb0.14O3 samples. The intensity of the yellow colour in the samples is related to the presence of Tb4+ ions. Samples with higher concentration of Tb4+ ions lead to a better yellow colour. The chemical stability of these pigments was determinate in an industrial glaze. The glazing tests indicated that the powder samples with x = 0.06 and 0.32 fired at 1300 °C were stable in the glaze. These results make it a potential candidate for environmental friendly yellow ceramic pigment to be used in applications such as pigment for glazes or inkjet printers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号