首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stress caused by calcium–magnesium–alumino–silicate (CMAS) corrosion is a critical factor in thermal barrier failure of thermal barrier coatings (TBCs). For the service safety of TBCs, it is important to characterize the stress inside TBCs during CMAS corrosion using a nondestructive and accurate method. In this study, photoluminescence spectroscopy technology was applied to characterize the stress in TBCs during CMAS corrosion. First, TBC specimens containing yttrium–aluminum–garnet doped with trace Ce3+ ions (YAG:Ce3+)/yttrium oxide partially stabilized zirconia double-ceramic-layer were prepared by atmospheric plasma spraying. Then, CMAS corrosion experiments were performed using the TBC specimens, and a mechanical model was derived based on Ce3+ photoluminescence spectroscopy to investigate the stress in the TBCs. Finally, the microstructure, extent of CMAS corrosion and stress field in TBC specimens, was characterized. The results reveal that the penetration of CMAS leads to local stress concentration and a nonlinear stress distribution from the outside surface to the inside of the YAG:Ce3+ layer. In addition, an increase in corrosion time, temperature, and CMAS concentration can significantly influence the evolution of the stress field in TBCs.  相似文献   

2.
The spallation resistance of an air plasma sprayed (APS) thermal barrier coating (TBC) to cool-down/reheat is evaluated for a pre-existing delamination crack. The delamination emanates from a vertical crack through the coating and resides at the interface between coating and underlying thermally grown oxide layer (TGO). The coating progressively sinters during engine operation, and this leads to a depth-dependent increase in modulus. Following high temperature exposure, the coating is subjected to a cooling/reheating cycle representative of engine shut-down and start-up. The interfacial stress intensity factors are calculated for the delamination crack over this thermal cycle and are compared with the mode-dependent fracture toughness of the interface between sintered APS and TGO. The study reveals the role played by microstructural evolution during sintering in dictating the spallation life of the thermal barrier coating, and also describes a test method for the measurement of delamination toughness of a thin coating.  相似文献   

3.
《Ceramics International》2023,49(8):12042-12053
A thermal shock test was conducted on an 8 wt% Y2O3 stabilized ZrO2 electron beam-physical vapor deposited (EB-PVD 8YSZ) thermal barrier coating with a (Ni, Pt)Al bond coating on the substrate with different curvature signs. The microstructural evolution and durability have been characterized. The microstructure of the top ceramic layer is strongly dependent on the substrate geometry. The results of the thermal shock test indicated that the sample with a positive curvature exhibits mixed mode spalling by the linking of cracks at TBC/TGO interface and TGO/BC interface. Spallation occurs primarily at the TGO/BC interface and inside the bond coats near to the surface of bond coats in planar samples. The spalling occurs principally at the TGO/BC interface in specimens with a negative curvature. The failure mechanism is elucidated integrate with stress analysis.  相似文献   

4.
The internal residual stress of thermal barrier coating (TBC) induced during the preparation and service process is the kernel cause of internal and interfacial failure and even the structure damage and destruction. Therefore, the accurate characterization of the internal stress is of great significance for TBC property and life evaluation. Fluorescence piezo-spectroscopic technology has been used to realize the nondestructive measurement of the TBC internal stress. However, the sensitivity of the existing Eu3+/Cr3+ fluorescence, namely, the piezo-spectroscopic coefficient, is normally <10 cm−1/GPa. There is still an urgent need to develop a sensitive method or material of piezo-spectroscopy for the precision measurement of the TBC internal stress. This paper used Ce3+ as a sensing medium to detect stress. YAG:Ce3+ was applied as the top-coating material of TBC. Then, calibration experiments of the piezo-spectroscopic coefficient were carried out. The results demonstrated that the obtained Ce3+ piezo-spectroscopic coefficient can be up to 4.48 cm−1/MPa, almost three magnitudes larger than other existing fluorescence piezo-spectroscopic technologies.  相似文献   

5.
《Ceramics International》2020,46(6):7489-7498
The thermal shock behavior of a thermal barrier coating (TBC) prepared by plasma spraying at 1100 °C was investigated. The TBC consisted of a double layer structure of 8YSZ/CoCrAlYTaSi. The morphology, microstructure, phases and the elemental distribution of the TBCs were characterized using scanning electron microscopy (SEM), transmission electron microscope (TEM), scanning transmission electron microscope (STEM), X-ray diffraction (XRD) and electron probe micro-analysis (EPMA). The characterization results showed that the film consisted primarily of metastable tetragonal phases (t′), and a large number of micro-cracks were present in the 8YSZ crystals. Following eighty-six thermal shock cycles of the specimens a large areal spallation was observed on the 8YSZ coating. The decreased concentration of yttrium at the coating interfaces weakened the inhibition of crystal growth and the phase transition of the Al2O3. The growth of TGO (Thermal growth oxide) and the diffusion into the 8YSZ coating produced deformation and stress in the ceramic coating. Tantalum appeared to absorb the oxygen that diffused into the coatings and delayed the growth of TGO in the interface between the CoCrAlYTaSi and substrate, which was beneficial to prolonging the life of the TBC.  相似文献   

6.
A micro-agglomerated particle embedded–thermal barrier coating (TBC) structure was prepared by an improved plasma spray process to withstand the sintering-induced degradation of TBCs during service. In this study, the sintering resistance and thermophysical and mechanical properties of conventional and novel-structured TBCs were systematically characterized. The results suggested that the thermal conductivity and sintering shrinkage of the novel-structured TBCs were approximately 30% lower than those of conventional air plasma spraying TBCs. The elastic modulus of the novel-structured coating is only 32% of that of the conventional structure after thermal exposure at 1300°C for 100 h. The distinct structure of the coating is the main factor that influences its performance. The relationship between the structural evolution and residual strain of the coating was analyzed using electron backscatter diffraction and transmission electron microscopy. Significant differences were observed in the sintering behavior of the dense matrix and embedded particle regions in the coating. Some columnar grains near the intersplat pores in the dense matrix have similar lattice orientations, and they tend to connect and consequently heal the intersplat pores. The large pores between the agglomerated particles and non-oriented submicron-sized grains that constitute these particles are responsible for the sintering resistance of the coating.  相似文献   

7.
Segmentation cracks are crucial for enhancing the strain tolerance and decreasing the propensity of delamination for thermal barrier coatings (TBCs). In this study, segmentation cracks were prepared in air plasma-sprayed TBCs by controlling the residual stress. The evolution of the stress in the coating was characterized via photoluminescence piezospectroscopy using trace α-Al2O3 impurities as stress sensor. Tensile stress (~170 MPa) formed in the as-deposited coating was converted into compressive stress through further thermal exposure. The relationship between the formation of the segmentation cracks and stress in the coating was investigated. It was demonstrated that the segmentation cracks could be formed when a critical coating thickness is achieved. The critical coating thickness and spacing of the segmentation cracks dependent on the tensile stress in the as-deposited coating, and they could be manipulated by controlling the deposition and substrate temperatures. In addition, the evolution of the microstructure and phase composition of the yttria-stabilized zirconia coating was examined.  相似文献   

8.
《Ceramics International》2021,47(24):34361-34379
This paper aimed to design and optimize the structure of a thick thermal barrier coating by adding graded layers to achieve a balance between high thermal insulation capacity and durability. To this end, conventional TBC, conventional TTBC, and functionally graded TTBCs were deposited on the superalloy substrate by air plasma spraying. To determine the quality of the bond strength of the coatings, the bonding strength was measured. The durability of coatings was evaluated by isothermal oxidation and thermal shock tests. Then, at a temperature of 1000 °C, the thermal insulation capacity of the coatings was carried out. The microstructure of the coatings was characterized by a scanning electron microscope. The results showed that the thickness of the TGO layer formed on the bond coat in the conventional TBC and TTBC under the oxidation test at 1000 °C after 150 h was 2.79 and 2.11 μm, respectively, whereas, in the functionally graded TTBC samples, no continuous TGO layer was observed as a result of internal oxidation. The functionally graded TTBC presented higher durability than conventional TTBC due to improved bonding strength, thermal shock resistance, and the lack of a TGO layer at the bond/top coat interface. Also, the thermal insulation capacity of the functionally graded TTBC (with 1000 μm thickness of YSZ coating) was better than TTBC.  相似文献   

9.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   

10.
The degradation of mechanical properties due to sintering is one of the major issues during high temperature service of thermal barrier coating system for advanced gas turbines. In this study, a constitutive model was developed by the variational principle, based on the experimentally observed microstructure features of suspension plasma-sprayed thermal barrier coatings. The constitutive model was further implemented in finite element analysis software, in order to investigate the effect of vertical cracks. The evolution of microstructure during sintering, coating shrinkage and mechanical degradation were predicted. The numerical predictions of Young's modulus were generally in agreement with experimental results. Furthermore, the effect of vertical cracks on the strain tolerance and sintering resistance were discussed. It was confirmed that the introduction of vertical cracks contributed to the improvement of both properties.  相似文献   

11.
A set of aerofoil shaped air plasma sprayed thermal barrier coated (APS-TBC) specimens were adopted in this paper to investigate the stress distributions in the ceramic top coat (TC) and the thermally grown oxide (TGO), the mechanism of local crack generation and propagation at the TC/BC (bond coat) interface. The failure mode of the TBC system, the distribution of asperities at TC/BC interface, thickness of the TC and BC, and the TC microstructure were found to be influenced by substrate curvature. Residual stress was therefore measured across the thickness of the TC, along the undulating TGO and mapped at locations of asperities where failure tended to occur to interpret the initiation of local failure. The role of the TGO was investigated via its chemical bonding with the TC and the decohesion occurring at the TGO/BC interface. The crack propagation at the interface has been discussed with respect to the macro-failure of the TBC system.  相似文献   

12.
《Ceramics International》2020,46(6):7475-7481
This paper is devoted to a comparative study on the isothermal oxidation of thick thermal barrier coating (TTBC) with and without segmented cracks produced by atmospheric plasma spray (APS) process. Accordingly, the growth of thermally grown oxide (TGO) and its effect on the degradation of the coating were investigated. Thick top coat in both segmented crack and conventional thick TBC reduced the double layered TGO growth rate slightly. The segmented crack thick TBC demonstrated longer isothermal oxidation life in comparison with that of the conventional thick TBC at 1100 °C. The dominant failure mechanism was spallation due to lateral cracking within the TGO and/or within TBC near the TGO layer, called mixed failure. Stress, and consequently strain, induced on the TTBC due to progressive TGO growth, seems to be primarily responsible for the crack initiation and propagation leading to the coating failure. Increment of elastic energy stored within the top coat due to the increasing of TGO thickness, finally causes thick thermal barrier coating failure in high temperature isothermal oxidation.  相似文献   

13.
Air plasma sprayed (APS) thermal barrier coatings (TBCs) are a widely used technology in the gas turbine industry to thermally insulate and protect underlying metallic superalloy components. These TBCs are designed to have intrinsically low thermal conductivity while also being structurally compliant to withstand cyclic thermal excursions in a turbine environment. This study examines yttria-stabilized zirconia (YSZ) TBCs of varying architecture: porous and dense vertically cracked (DVC), which were deposited onto bond-coated superalloys and tested in a novel CO2 laser rig. Additionally, multilayered TBCs: a two-layered YSZ (dense + porous) and a multi-material YSZ/GZO TBC were evaluated using the same laser rig. Cyclic exposure under simulative thermal gradients was carried out using the laser rig to evaluate the microstructural change of these different TBCs over time. During the test, real-time calculations of the normalized thermal conductivity of the TBCs were also evaluated to elucidate information about the nature of the microstructural change in relation to the starting microstructure and composition. It was determined that porous TBCs undergo steady increases in conductivity, whereas DVC and YSZ/GZO systems experience an initial increase followed by a monotonic decrease in conductivity. Microstructural studies confirmed the difference in coating evolution due to the cycling.  相似文献   

14.
Q.M. Yu  Q. He 《Ceramics International》2018,44(3):3371-3380
Residual stress has a significant influence on the crack nucleation and propagation in thermal barrier coatings (TBC) system. In this work, the residual stress in the air plasma spraying (APS) TBC system during cooling process was numerically studied, and the influence of the material properties of each layer on the residual stress was investigated. The morphologies of the interface were described by a piecewise cosine function, and the amplitude for each segment gradually increases. The elasticity, plasticity and creep of top coat (TC), thermally grown oxide (TGO) layer and bond coat (BC) were considered and the elasticity and creep of the substrate layer were taken into account. The material properties of all layers vary with temperature. The results show that the material properties have complex influence on the residual stress during cooling. The effect of the material properties of TC and BC on the residual stress at the interface is relatively large, and that of TGO and substrate is relatively small. These results provide important insight into the failure mechanism of air plasma spraying thermal barrier coatings, and important guidance for the optimization of thermal barrier coating interfaces.  相似文献   

15.
The anisotropic mechanical properties and contact damage of air-plasma-sprayed (APS) zirconia-based thermal barrier coatings (TBCs) have been investigated using Vickers and Hertzian indentation tests as functions of the nature of the bond coating and the degree of thermal exposure. The hardness values of the TBC systems are dependent on the applied load at relatively low loads, and became saturated at a load of 30 N, independent of the nature of the bond coating or the degree of exposure. The values of the top coating obtained on the top surface from the Vickers indentation tests were higher than those on the sectional plane, indicating that there is an anisotropic strain behavior due to the microstructure. The regions near to the interface of the top coating and the thermally grown oxide (TGO) layer show higher values after thermal exposure, whereas the values of the APS bond coating increased and the indentation values of the high-velocity oxygen fuel (HVOF) sprayed bond coating slightly decreased after thermal exposure, owing to resintering and element deficiency during thermal exposure, respectively. In contact damage tests, the TBC system with the HVOF bond coating showed less damage than the TBC system with the APS bond coating. The shape of the damage was different between the two systems. After thermal exposure, the damage was reduced in both TBC systems, and the cracking or delamination formed at the regions near to the interface of the top coating and the TGO layer in both TBC systems.  相似文献   

16.
《Ceramics International》2020,46(17):26731-26753
Thermal barrier coating (TBCs) are ceramic coatings that are deposited on metallic substrates to provide high thermal resistance. Residual stress is among the critical factors that affect the performance of TBCs. It evolves during the process of coating deposition and in-service loading. High residual stresses result in significant cracking and premature delamination of the TBC layer. In the present study, a hybrid computational approach is used to predict the evolution of internal cracks and residual stress in TBC. Smooth particle hydrodynamics (SPH) is first used to model the deposition of yttria-stabilized zirconia (YSZ) layer that contains various interfaces and micropores on a steel substrate. Then, three-dimensional (3D) finite element analysis is utilized to predict the evolution of internal cracks and residual stress in the ceramic coating layer. It is found that multiple cracks emerge during the solidification of the coating layer due to the development of high tensile (quenching) stresses. The cracking density is higher at regions near the coating interface. It is also found that compressive (residual) stresses are developed when the deposited coating is cooled to room temperature. The residual stress state is equibiaxial and nonlinear across the thickness/width of the TBC layer. The residual stress profile predicted compares well with that of hole drilling experiments.  相似文献   

17.
During high temperature service, a series of microstructure and phase evolutions occur in thermal barrier coatings (TBCs), which result in degradation of thermal insulation and durability. In this study, the sintering behavior of an air plasma sprayed 8 wt% YSZ coating deposited using electro-sprayed nanostructured particles (ESP) as feedstock powder was investigated and compared with conventional YSZ coating deposited using hollow spherical powders (HOSP). Due to the distinct asymmetric porous structure formed by nanosized YSZ particles, the ESP powder was partially melted in the plasma jet during the deposition, which resulted in the formation of a nanostructured coating that consisted of porous nanozones and dense zones. The ESP coating not only shows a significantly lower initial thermal conductivity of 0.70 W/mK, but also exhibits a stronger sintering resistance in terms of phase stability and thermal insulation compared to the conventional coating. When subjected to prolonged sintering at 1400°C for 128 hours, the thermal conductivity of the ESP coating would gradually increase to about half that of the HOSP coating at 1.29 W/mK. These differences are ascribed to the interaction among different sintering behavior between nanozones and dense zones.  相似文献   

18.
Gadolinium zirconate (Gd2Zr2O7, GZO) as an advanced thermal barrier coating (TBC) material, has lower thermal conductivity, better phase stability, sintering resistance, and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (YSZ, 6-8 wt%) at temperatures above 1200°C. However, the drawbacks of GZO, such as the low fracture toughness and the formation of deleterious interphases with thermally grown alumina have to be considered for the application as TBC. Using atmospheric plasma spraying (APS) and suspension plasma spraying (SPS), double-layered YSZ/GZO TBCs, and triple-layered YSZ/GZO TBCs were manufactured. In thermal cycling tests, both multilayered TBCs showed a significant longer lifetime than conventional single-layered APS YSZ TBCs. The failure mechanism of TBCs in thermal cycling test was investigated. In addition, the CMAS attack resistance of both TBCs was also investigated in a modified burner rig facility. The triple-layered TBCs had an extremely long lifetime under CMAS attack. The failure mechanism of TBCs under CMAS attack and the CMAS infiltration mechanism were investigated and discussed.  相似文献   

19.
Better thermal insulation of the hot path components is needed in state-of-the-art gas turbines and diesel engines, because of the increasing demands of the higher process temperatures. In these processes, thermal barrier coatings (TBCs) and various cooling techniques mainly control the component surface temperatures. For this reason low thermal conductivity of the TBCs are extensively studied. One of the main factors determining the TBC thermal conductivity is the coating microstructure, with specific attention to the porosity content, as well as to its morphology and orientation. One important feature of TBCs is the stability of their thermal properties as a function of time at service conditions. In fact the prolonged exposure to high temperature can promote shrinkage phenomena within the TBC, which make the coating less strain tolerant and more heat conductive. This leads to a drastic reduction of the functional effectiveness of this ceramic protective top layer.In order to study the evolution of thermal properties of TBC, as a function of time and temperature, thermal diffusivity evaluation by laser flash method has been performed. The measurements have been performed on freestanding yttria-stabilized zirconium oxide (YPSZ) TBCs. In particular, measurements have been carried out at five different temperatures in the range 900–1300 °C, for different ageing times (from 1 up to 150 h). The data show a significant increase of the thermal diffusivity also after exposures of few hours, especially at the highest testing temperatures. Microstructural analysis carried out by optical and electron microscopy clearly showed that the observed thermal diffusivity variations can be ascribed to sub-micrometric crack healing and sintering neck formation. Mechanical testing confirmed the microhardness increase of TBC as well. Finally the data have been summarised in order to experimentally define a “functional life” curve of the TBC, as a function of ageing time and temperature.  相似文献   

20.
The development of vertical cracks in air plasma sprayed (APS) thermal barrier coatings (TBCs) during thermal cycling and constrained sintering under a temperature gradient is investigated. Microstructural analysis shows that the development of the vertical cracks is associated with multiple processes, including sintering during the hold period and cleavage during cooldown. Inspired by the experimental observations, an image-based sintering model is used to simulate the development of vertical cracks as the coating sinters while constrained by a substrate. The computational results show that microstructural imperfections can develop into vertical cracks, which then propagate toward the interface. A simple analytical model is presented for the threshold level of in-plane stress for the onset of propagation of a vertical crack during constrained sintering. By combining the results of these different modeling approaches, the cross-coupling of the material and geometric parameters, and how this determines the sintering response (microstructure evolution) and vertical crack formation is evaluated. In addition, the growth of vertical cracks by a cleavage mechanism during cooldown is examined and the coupling between sintering, cleavage crack growth, and TBC lifetime is explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号