首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 6 毫秒
1.
Structural failure of concrete buildings on fire and complete destruction of the monolithic refractory lining during their drying stage are dangerous examples of the effect of explosive spalling on partially saturated porous media. Several observations in both cases indicated the presence of moisture accumulation ahead of the drying front, which are in tune with the most common theories on the explosive spalling of concrete. Previous studies have shown evidence of the existence of this phenomenon, however, they were biased by artifacts and experimental limitations (such as the beam hardening effect and changes in the microstructure of the material due to the presence of pressure and temperature sensors). In the current work, rapid neutron tomography was used to investigate the in-operando drying behavior of a high-alumina refractory castable, proposing a novel experimental layout aimed at a truly one-dimensional drying front. This setup provided more realistic boundary conditions, such as the behavior of a larger wall heated from one of its sides, while also preventing some nonphysical artifacts (notably beam hardening). By eliminating these aspects, a direct proof that moisture accumulates ahead of the drying front was obtained. This work also lays the basis for further studies focusing on the response sensitivity analysis to boundary conditions and other parameters (e.g., heating rates and properties of the sample related to the moisture clog formation), as well as useful data for the validation and characterization stages of numerical models of partially saturated porous media.  相似文献   

2.
AM/AMPS二元共聚物及其干燥研究   总被引:4,自引:0,他引:4  
采用水溶液聚合方法,使用新型低温氧化还原复合引发体系,制备出相对分子质量大于1.0×10^7,溶解时间小于2h的高分子量耐温抗盐AM/AMPS二元共聚物P(AM-co-AMPS)。热重分析表明,P(AM-co-AMPS)共聚物较PAM均聚物具有更好的热稳定性。研究了胶粒后处理过程中的干燥温度、干燥时间对共聚物性能的影响,结果表明,干燥温度在70~90℃,干燥时间3h,对共聚物溶解性和分子量无明显影响。  相似文献   

3.
Diboride-based ultra-high temperature ceramics (UHTCs) are a special class of ceramics with excellent comprehensive properties, which have extensive potential applications in extreme environments. However, their practical applications are limited, mainly due to the poor fracture toughness and thermal shock resistance. Refractory metals have high melting points, good ductility, and high toughness, which have huge potential to improve the properties of diboride-based ceramics. As a special class of additives, they have been adopted to promote densification, improve microstructure, and properties. However, diboride-based ceramics containing refractory metals have not received adequate attention due to relatively weak practical effects on property improvement. The present review highlights the progress and existing problems of transition metal diborides with refractory metal additives, including W, Ta, Mo, Nb, Hf, V, Cr, and Zr, focusing mainly on the microstructure change and property improvements, followed by challenges and possible future development strategies.  相似文献   

4.
The kinetics of the dehydration of four sizes of spherical inorganic materials was studied experimentally with warm air using a fixed-bed dryer at laboratory scale. Following the evaluation of the effect of bed thickness, air mass rate, and air temperature on drying kinetics, a kinetic model consisting of two equations was proposed. The main novelty of this study resides in the possibility of utilizing a new model for simultaneous heat and mass transfer in an efficient manner for practical applications and appropriate system optimization, especially during the falling rate period.  相似文献   

5.
In flash sintering experiments, the thermal history of the sample is key to understanding the mechanisms underlying densification rate and final properties. By combining robust temperature measurements with current-ramp-rate control, this study examined the effects of the thermal profile on the flash sintering of yttria-stabilized zirconia, with experiments ranging from a few seconds to several hours. The final density was maximized at slower heating rates, although processes slower than a certain threshold led to grain growth. The amount of grain growth observed was comparable to a similar conventional thermal process. The bulk electrical conductivity correlated with the maximum temperature and cooling rate. The only property that exhibited behavior that could not be attributed to solely the thermal profile was the grain boundary conductivity, which was consistently higher than conventional in flash sintered samples. These results suggest that, during flash sintering, athermal electric field effects are relegated to the grain boundary.  相似文献   

6.
The ideal shrinkage model assumes that the extent of shrinkage is equal to the volume of liquid water removed from the dried medium. Generally if a material undergoes glass transition during the drying process, shrinkage will no longer be ideal. The aim of this study was to observe how the glass transition temperature influences the shrinkage kinetics. Cylindrical banana samples were dried. Shrinkage extent was significant for all drying conditions (temperature: 30–50°C, relative humidity: 0–80%). Deviation from linearity was found to be affected not only by drying air temperature but also by its relative humidity.  相似文献   

7.
The ideal shrinkage model assumes that the extent of shrinkage is equal to the volume of liquid water removed from the dried medium. Generally if a material undergoes glass transition during the drying process, shrinkage will no longer be ideal. The aim of this study was to observe how the glass transition temperature influences the shrinkage kinetics. Cylindrical banana samples were dried. Shrinkage extent was significant for all drying conditions (temperature: 30-50°C, relative humidity: 0-80%). Deviation from linearity was found to be affected not only by drying air temperature but also by its relative humidity.  相似文献   

8.
ABSTRACT

Environmental factors, such as temperature and moisture, are known to have a degrading effect on the mechanical properties and performance of adhesive joints, which may be perceived as a non-problem because various works have shown that the static response of an adhesive is normally unaffected by slight moisture and temperature variations that occur in real-world applications. While this may be true, performance under purely static conditions is rarely found in commercial uses and most adhesive joints are subjected to cyclic loadings throughout their life. Interestingly, not much work has been done on the effects of the environment on cyclically loaded adhesive joints, but the consensus is that the fatigue response is much more affected by environmental changes than the static response, which is arguably the most important analysis. The general trend is that hygrothermal ageing decreases the number of cycles the joint can withstand and also decreases the threshold fracture toughness value, which translates to cracks initiating sooner, but exceptions to these behaviours also exist.  相似文献   

9.
《Drying Technology》2013,31(7):1539-1575
Abstract

The dynamic behavior of the primary and secondary drying stages of the lyophilization process were studied when (a) single vials located at different positions on the tray were individually being dried, and (b) the vials on the tray are arranged in clusters of square and hexagonal arrays and all the vials on the tray are simultaneously being dried. For both cases (a) and (b), fast drying times and relatively more uniform distributions of temperature and concentration of bound water at the end of the secondary drying stage are obtained by heat input control that runs the lyophilization process close to the melting and scorch temperature constraints. The heating control policies for the systems of case (b) are found to be more conservative and significantly more complex than those for the systems of case (a), because in case (b) there are vials on the tray that are in their secondary drying stage while other vials on the same tray have not yet completed their primary drying stage. Furthermore, the analysis and synthesis of the results presented in this work (i) indicate the minimum number of vials and their relative locations on the tray that have to be monitored by sensors so that the dynamic drying state of all the vials being dried simultaneously on the tray, could be satisfactorily determined in real time and appropriate, if necessary, control action could be applied, and (ii) suggest changes in the design of the freeze drying equipment so that the production rate of the freeze dryer could be improved and the product could also have enhanced properties of stability and quality at the end of the lyophilization process.  相似文献   

10.
The dynamic behavior of the primary and secondary drying stages of the lyophilization process were studied when (a) single vials located at different positions on the tray were individually being dried, and (b) the vials on the tray are arranged in clusters of square and hexagonal arrays and all the vials on the tray are simultaneously being dried. For both cases (a) and (b), fast drying times and relatively more uniform distributions of temperature and concentration of bound water at the end of the secondary drying stage are obtained by heat input control that runs the lyophilization process close to the melting and scorch temperature constraints. The heating control policies for the systems of case (b) are found to be more conservative and significantly more complex than those for the systems of case (a), because in case (b) there are vials on the tray that are in their secondary drying stage while other vials on the same tray have not yet completed their primary drying stage. Furthermore, the analysis and synthesis of the results presented in this work (i) indicate the minimum number of vials and their relative locations on the tray that have to be monitored by sensors so that the dynamic drying state of all the vials being dried simultaneously on the tray, could be satisfactorily determined in real time and appropriate, if necessary, control action could be applied, and (ii) suggest changes in the design of the freeze drying equipment so that the production rate of the freeze dryer could be improved and the product could also have enhanced properties of stability and quality at the end of the lyophilization process.  相似文献   

11.
BACKGROUND: Sn–Pb alloy‐filled high‐density polyethylene (HDPE) composites exhibit double positive‐temperature‐coefficient (PTC) behavior, with the first transition at the melting point of HDPE and the second at that of Sn–Pb alloy. The objective of this study is to improve the reversibility and reproducibility of double‐PTC transitions of these composite materials by enhancing the filler–matrix interface. RESULTS: Fourier transform infrared spectroscopy, surface wettability and dynamic mechanical and rheological measurements confirm that surface‐treating Sn–Pb with titanate concentration ≤1 wt% enhances the interface adhesion between Sn–Pb alloy and HDPE matrix. Surface‐treating Sn–Pb with titanate concentration ≤1 wt% increases the PTC transition temperature, reduces the PTC intensity and improves the reversibility and reproducibility of the double‐PTC behavior of Sn–Pb/HDPE composites. CONCLUSION: It is demonstrated that adjusting the filler–matrix interface is an effective means to modify the double‐PTC behavior of Sn–Pb alloy‐filled HDPE composites. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号