首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(20):29547-29553
Red light-emitting phosphors are important to the field of plant lighting. Therefore, it is necessary to further optimize phosphor materials. Herein, we synthesized a sequence of phosphor LaTiSbO6:Mn4+ (LTS:Mn4+). Due to the 2E to 4A2 transition, LTS:Mn4+ phosphors can emit red light in the range of 620–780 nm, with an emission peak at 687 nm. Chemical unit cosubstitution (substituting W6+ - Al3+/W6+ - Ga3+ for Ti4+ - Sb5+) was used as a method to enhance the luminescence properties of LTS:Mn4+. When the substitution ratio of W6+ - Ga3+ and W6+ - Al3+ reached 0.1% and 0.75%, respectively, the luminescence intensity increased to 204% and 182%. Using the LTS:Mn4+, W6+, Ga3+ phosphor and a 470 nm blue chip to fabricate a pc-LED device, the electroluminescence (EL) spectrum is well matched with the phytochrome absorption range. Therefore, the LTS:Mn4+ phosphor will be very promising for plant growth.  相似文献   

2.
《Ceramics International》2023,49(13):21688-21694
The NIR phosphor-converted light-emitting diode (NIR pc-LED) is a new near-infrared light source that has been widely studied. Among various NIR phosphors, Cr3+ doped gadolinium aluminum gallium garnet (GAGG:Cr3+) ceramic phosphor has shown great potential due to its ultra-high efficiency and thermal stability. Despite its capabilities, its detection range may be limited due to a relatively narrow emission bandwidth. To make the GAGG:Cr3+ ceramic phosphors achieve both high efficiency and broadband emission, a series of Gd3Al2-x-yScxGa3O12:yCr3+ (GASGG:Cr3+) ceramic phosphors were prepared. Thanks to the decrease of crystal field strength with the doping of Sc3+, the full width at half maximum (FWHM) of GASGG:Cr3+ ceramic phosphors were extended from 84 nm to 117 nm, and the emission peak exhibited a red-shift of 46 nm. Meanwhile, it still retained extremely high external quantum efficiency (EQE = 47%) and excellent thermal stability (90.7%@150 °C). Then, a NIR pc-LED prototype device was fabricated by combining GASGG:Cr3+ ceramic phosphor with a blue LED chip. The NIR light output power and the photoelectric conversion efficiency of this device achieved 646 mW and 19.2%, respectively. Finally, the application effect in night vision and venography of this prototype device was demonstrated.  相似文献   

3.
《Ceramics International》2015,41(7):8801-8808
Gd2O3:Dy3+ Al3+ phosphors is synthesised by a wet-chemical method for various concentrations of Al3+ ion. X-ray diffraction, photoluminescence and impedance spectroscopy are used to understand the physio-chemical properties of the phosphors. The emission spectra of Dy3+ ion exhibit transition peaks centred at 572 nm (yellow), 486 nm (blue) and 669 nm (red). Energy transfer from Gd3+ to Dy3+ is also verified by exciting the phosphors at 274 nm. Some of the Dy3+ ions occupy both C2 and S6 site of Gd3+ ion in Gd2O3 matrix. It is also revealed that the enhancement of Dy3+ emission is strongly correlated to the surface morphology of the phosphors. Introducing Al3+ ions in Gd2O3:Dy3+ phosphor affect the emission properties of Dy3+ ions and its influence is explored at various concentration of Al3+ ions. The energy level diagram is presented to explain the cross-relaxation process among Dy3+ ions and the energy transfer from Gd3+ to Dy3+ ion.  相似文献   

4.
Herein, a series of Eu2+&Mn2+substituted fluorophosphates Ca6Gd2Na2(PO4)6F2 phosphor with apatite structure have been synthesized and investigated by the powder X‐ray diffraction, photoluminescence spectra, fluorescence decay curves, thermal quenching, and chromaticity properties. Particularly, both Eu2+ and Mn2+ emissions at the two different lattice sites 4f and 6h in Ca6Gd2Na2(PO4)6F2 matrix have been identified and discussed. The dual energy transfer of Eu2+→Mn2+ and Gd3+→Mn2+ in Ca6Gd2Na2(PO4)6F2:Eu2+,Mn2+ samples have been validated and confirmed by the photoluminescence spectra. The dependence of color‐tunable on the activator concentration of Mn2+ was investigated to realize white light emission. By varying the doping concentration of the Mn2+ ion, a series of tunable colors including pure white light and candle light are obtained under the excitation of 350 nm. Moreover, the fluorescence decay curves have been fitted and analyzed using the Inokuti–Hirayama theoretical model to estimate the Eu–Mn interaction mechanism. We also investigated temperature‐dependent photoluminescence quenching characteristics according to the Arrhenius equation. Preliminary studies on the properties of the phosphor indicated that the obtained phosphors might have potential application as a single‐component white‐emitting phosphor for UV‐based white LEDs.  相似文献   

5.
In this work, we report a novel phosphor LSPO:Mn2+ that exhibits red emission at about 616 nm and pleasant broad near-infrared (NIR) emission at about 800 nm with a full width at half maximum (fwhm) of 112 nm. The structure and spectra show that the doped manganese ions occupy two kinds of Sc sites forming Mn1 and Mn2 emission centers, which are responsible for red and NIR emission, respectively. The XPS and low-temperature fluorescence spectra reveal that both red and NIR emissions come from the Mn2+ ions. Besides, NIR luminescence is improved by doping Yb3+ in LSPO:Mn2+, leading to the broadened NIR emission range (700-1100 nm) and enhanced luminescent thermal stability. Our results suggest that the prepared LSPO:Mn2+ and LSPO:Mn2+,Yb3+ phosphors offer the potential applications as red and NIR components in phosphor-converted white-light-emitting diodes (pc-WLED) and broadband NIR pc-LED. Meanwhile, this work provides a new way to design novel broadband NIR phosphors.  相似文献   

6.
In this study, it is shown how the photoluminescence, scintillation, and optical thermometric properties are managed via the introduction of Gd3+ ions into Pr3+:Lu2Zr2O7. Raman spectra validate that partial replacement of Lu3+ with Gd3+ can promote the phase transition of Lu2Zr2O7 host from the defective fluorite structure to the ordered pyrochlore one. Upon 289 nm excitation, all the samples emit the 483 (3P0 → 3H4), 581 (1D2 → 3H4), 611 (3P0 → 3H6), 636 (3P0 → 3F2), and 714 nm (3P0 → 3F4) emissions from Pr3+ ions, which are enhanced with the addition of Gd3+ ions due to the modification of crystal structure. Dissimilarly, the X-ray excited luminescence spectra consist of a strong emission located at 314 nm from Gd3+ ions (6P7/2 → 8S7/2), together with the typical emissions from Pr3+ ions, which exhibit different dependences on the Gd3+ concentration. When the luminescence intensity ratio between the 3P0 → 3H6 (611 nm) and 1D2 → 3H4 (581 nm) transitions is selected for temperature sensing, Pr3+:(Lu0.75Gd0.25)2Zr2O7 shows the optimal relative sensing sensitivity of 0.78% K−1 at 303 K, which is higher than that of the Gd3+-free sample. Therefore, the developed Pr3+:(Lu, Gd)2Zr2O7 phosphors have the applicative potential for optical thermometry, X-ray detection, and photodynamic therapy.  相似文献   

7.
Gd3Al3Ga2O12:1.5%Ce, xMg2+ (GAGG:1.5%Ce, xMg2+) transparent ceramic phosphors (TCPs) were prepared via a two-step sintering method. The effects of MgO on microstructures and luminescent properties of GAGG:Ce TCPs are investigated for the first time. For the optimized Mg2+ of x = 0.5%, the in-line transmittance of the obtained TCP reaches 78.6%. Performances of the titled TCPs in high-power light-emitting diodes (LEDs) and laser diodes (LDs) lighting are illustrated. The optimized TCP shows the luminous efficacy of 84.0 lm W?1 in LD lighting. This work provides a strategy to modify TCPs for the next-generation LD lighting.  相似文献   

8.
Deep-red light emitting phosphors are widely used in LEDs for indoor plant growth because of the critical role played by red light in plant growth. The luminescence properties of deep-red phosphors are still not well understood at present. An energy transfer strategy is a common and effective method to improve luminescence properties. In principle, the energy transfer process may occur when the sensitizer's emission spectra overlap with the activator's excitation spectra. In this work, Bi3+ and Mn4+ were incorporated into the matrix of Gd2MgTiO6 as sensitisers and activators, respectively. Mn4+ ions tend to occupy the [TiO6] octahedral site and the Bi3+ ions are expected to substituted in the site of Gd3+. The energy transfer process from Bi3+ to Mn4+ was realised and the photoluminescence (PL) intensity of Mn4+ increased with the doping content of Bi3+. Upon excitation at 375 nm, the PL intensity of Mn4+ increased to 116.4% when the doping concentration of Bi3+ reached 0.3%. Finally, the pc-LED devices were prepared by a Gd2MgTiO6:Bi3+, Mn4+ phosphor. The high red luminescence indicated that this phosphor has potential applications in indoor LED lighting.  相似文献   

9.
Cr3+-doped phosphors have recently gained attention for their application in broadband near-infrared phosphor-converted light-emitting diodes (pc-LEDs), but generally exhibit low efficiency. In this work, K2Ga2Sn6O16:Cr3+ (KGSO:Cr) phosphor was designed and synthesized. The experimental results show that the Cr3+-doped phosphor exhibited broadband emissivity in the range 650-1300 nm, with a full width at half maximum (FWHM) of approximately 220-230 nm excited by a wavelength of 450 nm. With the co-doping of Gd3+ ions, the internal quantum efficiency (IQE) of the KGSO:Cr phosphor increased from 34% to 48%. The Gd3+ ions acted neither as activators nor sensitizers, but to justify the crystal field environment for efficient Cr3+ ions broad emission. The Huang-Rhys factor decreased as the co-doping of Gd3+ ions increased, demonstrating that the nonradiative transitions were suppressed. An efficient strategy for enhancing the luminescence properties of Cr3+ ions is proposed for the first time. The Gd3+–co-doped KGSO:Cr phosphor is a promising candidate for broadband NIR pc-LEDs.  相似文献   

10.
Developing environment-friendly dual-emission phosphors of both blue–cyan and deep-red lights is desirable for the utilized indoor plant lighting research. Notably, the naked 6s and 6p Bi3+ ions are sensitive to the lattice sites, which emit from Ultraviolet (UV) to red lights in various crystal compounds. Meanwhile, the 2E → 4A2g transition of Mn4+ ions promises its deep-red light emissions, which satisfies the demand for specific wavelength lights for plants growth. Hence, a Bi3+/Mn4+ co-doped Sr2LaGaO5: Bi3+, Mn4+ (SLGO:Bi3+:Mn4+) phosphor was finally synthesized. The phase, micromorphology and luminescent properties were systematically evaluated. Upon excitation at 350 nm light, dual emissions of both blue–cyan (470 nm) and deep-red (718 nm) lights were observed. Besides, due to the pronounced photoluminescence (PL) spectral overlap between Bi3+ and Mn4+ ions, a potential energy transfer process from Bi3+ to Mn4+ ions was confirmed. The relative PL intensities between Bi3+ and Mn4+ ions can be tuned just by adjusting the Mn4+ ion concentration. Besides, Li+ co-doping has been evidenced to improve the deep-red emissions (718 nm) of SLGO:0.005Mn4+ due to charge compensation and rationally designed lattice distortion, together with the improved thermal stability. Finally, the emissions of SLGO:Bi3+, Mn4+, Li+ phosphor suit properly with the absorption of the four fundamental pigments for plant growth, indicating that the prepared phosphorescent materials may have a prospect in plant light-emitting diodes lighting.  相似文献   

11.
《Ceramics International》2021,47(23):33152-33161
The Mn4+-doped Ca2MgTeO6 (CMTO) far-red emitting phosphors with double perovskite-type structure were successfully synthesized. Upon near-ultraviolet (n-UV, 300 nm) light excitation, the as-prepared phosphors showed far-red light at 700 nm attributed to the 2Eg4A2g transition of Mn4+ ion. The doping concentration of the CMTO:xMn4+ samples was optimized to be 0.8 mol%. The relevant mechanism of concentration quenching was demonstrated as the dipole-dipole interaction. Furthermore, solid solution and impurity doping strategies were adopted to improve the far-red emission of the luminescence-ignorable CMTO:Mn4+ phosphor. Series of Ca2MgTe(1−y)WyO6:0.8 mol%Mn4+ (y = 0–100 mol%) solid solution and Ca2−zLnzMgTe0.6W0.4O6:Mn4+ (Ln = La, Y, and Gd, z = 10 mol%) phosphors were synthesized through the above two strategies. The luminescence intensity of the optimal Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphor was 13.7 times that of the CMTO:Mn4+ phosphor and 2.51 times that of red commercial phosphor K2SiF6:Mn4+. Notably, both CMTO:Mn4+ and Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphors exhibited remarkable thermal stability compared with most Mn4+-doped phosphors. Finally, the highly efficient Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphor was successfully applied in fabricating the warm white light diode (w-LED). This working along both lines strategy exhibited great potential for luminescence optimization of Mn4+-doped oxide phosphors.  相似文献   

12.
Searching for an efficient non rare earth‐based oxide red phosphor, particularly excitable by light in the wavelength from 380 to 480 nm and unexcitable by green light, is essential for the development of warm white light emitting diodes (WLEDs). Here, we report a promising and orderly‐layered candidate: Sr4Al14O25:Mn4+ with CIE color coordinates (0.722, 0.278). It has higher luminescence efficiency particularly upon blue excitation and is much cheaper than the commercial red phosphor 3.5MgO·0.5MgF2·GeO2:Mn4+ (MMG:Mn4+). In sharp contrast to Eu2+‐doped (oxy)nitrides, the phosphor can be synthesized by a standard solid‐state reaction at 1200°C in air. The effects of flux boron content, environment, and preparation temperature, sintering dwelling time as well as Mn concentration have been systematically investigated for establishing the optimal synthesis conditions. The low temperature emission spectra reveal that there are at least three types of Mn4+ ions in Sr4Al14O25:Mn4+ due to the substitution for the distorted octahedral Al3+ sites. The AlO6 layers where Mn4+ prefers to reside are well separated from one another by AlO4 tetrahedra in one dimension parallel to axis a. This scenario can efficiently isolate Mn4+ ions from local perturbations, thereby enabling the high efficiency of luminescence. The energy transfer rates and mechanism are discussed.  相似文献   

13.
A novel Mn2+ activated green-emitting MgAlON transparent ceramic phosphor was synthesized from Mg0.21Al2.57O3.80N0.20:0.03Mn2+ (MgAlON:Mn) phosphor powder by pressureless sintering combining with hot isostatic pressing. By crystalline structure refinement and cathodoluminescence (CL) characterization, it is demonstrated that Mn2+ was dissolved in the spinel lattice and occupied the tetrahedral site. The ceramic, retaining high transmittance in UV–vis region (up to 82% at 800 nm) and excellent thermal-mechanical properties of MgAlON transparent ceramic-matrix, shows a strong green emission at 513 nm under 445 nm light excitation. Compared with its powder counterpart, the ceramic phosphor exhibits higher green color purity, higher internal quantum efficiency (47%) and lower thermal quenching. It is suggested that this novel green solid phosphor could be applied in high color rendering and high-power white light-emitting diodes when combined with a red solid phosphor and a blue LED chip.  相似文献   

14.
To make a Mn2+-doped red glass phosphor that can be excited with ultraviolet (UV) light of light-emitting diodes (LEDs), 60P2O5-35ZnO-5Al2O3-8MnO-xCu2O glasses (x = 0-1.00) were prepared by a melt-quenching method at 1200-1400°C for 30-180 minutes in atmospheric air, and the redox of Mn and Cu as well as fluorescence properties were investigated. The Mn2+ ion was not reduced and oxidized in the melting, quenching, and annealing processes. The valence of Cu in the glasses changed in the order of 0, 1+, and 2+ with the increase in the amount of Cu2O and in the melting temperature and time. In this study, a 60P2O5-35ZnO-5Al2O3-8MnO-0.10Cu2O glass melted at 1250°C for 90 minutes, having the highest Cu+ concentration, showed the strongest Mn2+ red fluorescence under the UV light at 275 nm. This strong Mn2+ red fluorescence has been caused by the energy transfer from excited Cu+ ions to Mn2+ ions.  相似文献   

15.
Mn4+-activated deep red-emitting SrLaLiTeO6 phosphors are investigated for indoor plant growth LED applications for the first time. The phosphors crystallize in monoclinic (P21/n) symmetry is isostructural with SrLaLiTeO6 host. B-site substitution of Mn4+ ions is confirmed from the redshift of high energy phonon modes in both Raman and IR spectra. The phosphor exhibited a far-red emission centered at 696 nm corresponding to the 2Eg → 4A2g spin-forbidden transition of the Mn4+ ions. Approximate crystal field parameters depict the weak influence of neighboring ligand fields on Mn4+ ions and the least covalence of Mn4+-ligand bonding compared to other double perovskite phosphors. Moreover, the phosphors exhibit excellent thermal stability with an activation energy of 0.23 eV. Phosphor parameters including CCT, color purity, and quantum yield are evaluated and their values meet the requirements of a red-emitting phosphor for LED applications. Furthermore, the PL emission spectrum of SrLaLiTeO6: Mn4+ matches with the absorption spectrum of plant phytochromes denoting the prospects of this phosphor for indoor plant growth LED applications.  相似文献   

16.
Nanocrystals doped transparent glasses or glass ceramics have shown promising tunable magnetic and magneto-optical performance. In this study, the Al2O3-induced in-situ crystallization of Gd3Al2Ga3O12 in tellurite glass was reported. 10–20 nm-cubic Gd3Al2Ga3O12 (Ia3d space group) nanocrystals formed in tellurite glass with Al2O3 content ≤ 0.75 mol% by 400 °C-heat treatment. When Al2O3 content in glass was higher than 0.75 mol%, excessive Al2O3 triggered the crystallization of orthorhombic GdAlO3 (Pnma) in which the Gd and Al ions existed as octahedral GdO8 and AlO6 units at a temperature higher than 398 °C. The in-situ crystallization influenced the glass network structure, broke the linkage of tetrahedral TeO4, and BO4, and formed trigonal pyramids TeO3 and BO3 instead. At the same time, nuclear magnetic resonance spectra revealed the conversion of AlO4→ AlO6, GaO4→ GaO6, and the changes from bridging oxygen to non-bridging oxygen as well. From energy-dispersive X-Ray analysis, Gd3+ clusters were observed, leading to the ferromagnetism of glass. Electron paramagnetic resonance spectra witnessed an enhancement of the Zeeman effect which is the reason for the improvement of Faraday rotation. Tellurite glass with 0.75 mol% Al2O3 after 400 °C-annealing (A75) showed a giant Verdet constant of 93 rad/T.m at 633 nm which is superior to most of the values from the literature.  相似文献   

17.
《Ceramics International》2023,49(7):10273-10279
The photoluminescence behavior of inorganic phosphors is generally influenced by thermal stability, which determines the luminescence efficiency of the corresponding devices. Here, a series of Eu2+, Mn2+ co-doped LiAl5O8 blue-green-emitting phosphors with thermal robust are successfully fabricated. The concentration-dependent emission spectra and the decay curves of the as-obtained LiAl5O8: Eu2+, Mn2+ samples manifest the occurrence of the energy transfer from Eu2+ to Mn2+ ions via dipole-dipole interaction, and the corresponding emitted colors are gradually modulated from blue to green under the excitation of 310 nm. Moreover, the zero-thermal-quenching luminescence is observed when the operation temperature is up to 423 K, which is attributed to the energy release from the trapping centers to emitting centers (Eu2+ and Mn2+) at high temperature. Furthermore, a warm white light-emitting diodes (WLEDs) device with correlated color temperature of 5061 K, a color rendering index of 80.6 and long-term stability is fabricated by combining UV LED chip (λex = 310 nm), as-obtained LiAl5O8: Eu2+, Mn2+ phosphor, commercially available red phosphor and green phosphor. These results prove the potential application of the as-obtained LiAl5O8: Eu2+, Mn2+ phosphor for UV-pumped WLEDs devices.  相似文献   

18.
Color-tunable up-conversion powder phosphors Zn(AlxGa1-x)2O4: Yb3+,Tm3+,Er3+ were synthesized via high temperature solid-state reaction. Also, the morphological and structural characterization, up-conversion luminescent properties were all investigated in this paper. In brief, under the excitation of a 980?nm laser, all powders have same emission peaks containing blue emission at 477?nm (attributed to 1G43H6 transition of Tm3+ ions), green emission at 526?nm and 549?nm (attributed to 2H11/24I15/2 and 4S3/24I15/2 transition of Er3+ ions respectively), red emission at about 659?nm and 694?nm (attributed to 4F9/24I15/2 transition of Er3+ ions and 3F33H6 transition of Tm3+ ions, respectively), which are not changed after the doping of Al3+ ions. However, the doping of Al3+ ions can enhance the up-conversion luminescent intensity and efficiency, while the emission color of as-prepared powder phosphors can be tunable by controlling the doping amount of Al3+ ions. Taking Zn(Al0.5Ga0.5)2O4:Yb,Tm,Er as the cut-off value, the emissions have clear blue-shift firstly and then show obvious red-shift with the increasing doping of Al3+ ions. Stated thus, pink emission in ZnAl2O4:Yb,Tm,Er, purplish pink emission in ZnGa2O4:Yb,Tm,Er and Zn(Al0.9Ga0.1)2O4:Yb,Tm,Er, purple emission in Zn(Al0.1Ga0.9)2O4:Yb,Tm,Er and Zn(Al0.3Ga0.7)2O4:Yb,Tm,Er, purplish blue emission in Zn(Al0.7Ga0.3)2O4:Yb,Tm,Er, blue emission in Zn(Al0.5Ga0.5)2O4:Yb,Tm,Er can be observed, which confirm the potential applications of as-prepared Zn(AlxGa1-x)2O4:Yb3+,Tm3+,Er3+ powder phosphors in luminous paint, infrared detection and so on.  相似文献   

19.
A double perovskite-type substrate of La2MgGeO6 (LMGO) was successfully synthesized via a high-temperature solid-state reaction method and was codoped with Mn4+ and Dy3+ to form a new deep-red phosphor (LMGO:Mn4+,Dy3+) for artificial plant growth light-emitting diodes (LEDs). This extraordinary phosphor can exhibit strong far-red emission with a maximum peak at 708 nm between 650 and 750 nm, which can be ascribed to the 2E→ 2A2 g spin-forbidden transition of Mn4+. The X-ray diffraction (XRD) patterns and high-resolution transmission electron microscopy (HRTEM) clarified that the La3+ sites in the host were partly replaced by Dy3+ ions. Moreover, we discovered energy transfers from Dy3+ to Mn4+ by directly observing the significant overlap of the excitation spectrum of Mn4+ and the emission spectrum of Dy3+ as well as the systematic relative decline and growth of the emission bands of Dy3+ and Mn4+, respectively. With the increase in the activator (Mn4+) concentration, the relationship between the luminescence decay time and the energy transfer efficiency of the sensitizer (Dy3+) was studied in detail. Finally, an LED device was fabricated using a 460 nm blue chip, and the as-obtained far-red emitting LMGO:Mn4+,Dy3+ phosphors for Wedelia chinensis cultivation. As expected, the as-fabricated plant growth LED-treated Wedelia chinensis cultured in the artificial climate box with overhead LEDs demonstrated that after 28 days of irradiation, the average plant growth rate and the total chlorophyll content were better than those of specimens cultured using the commercial R-B LED lamps, indicating that the as-prepared phosphor could have a potential application in the agricultural industry.  相似文献   

20.
A single-phase and optimized pure white light emitting Dy3+-doped and Dy3+/Mn2+ codoped Na3Y(PO4)2 phosphors (NYPO) were synthesized by traditional solid state reaction process. The as-synthesized phosphors were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectra and photoluminescence studies. The results suggested that the NYPO: Dy, Mn phosphors were crystallized in orthorhombic structures. The presence of dopants Dy and Mn was quantified by XPS analysis. All of the phosphors were effectively excited using a light of wavelength 351?nm and emissions in two regions, blue (~482?nm, 4F9/26H15/2) and yellow (~573?nm, 4F9/26H13/2), were obtained due to the f-f transitions of Dy3+ ions. The maximum intensities of Dy and Mn obtained were 0.07 and 0.05 for NYPO:Dy and NYPO:0.07Dy, Mn, respectively. The chromaticity coordinates, color temperatures, and color rendering indices of NYPO: 0.07Dy ((0.32, 0.33), 6194?K, and 48) and NYPO:0.07Dy, 0.05Mn phosphors ((0.33, 0.33), 5688?K, and 62) were determined. The energy transfer mechanism and oxygen vacancies that arise due to the introduction of Mn2+ ions in the NYPO:Dy phosphors, are responsible for the tuning of cool white light to pure day white light. The introduction of Mn in the Dy doped NYPO phosphor enhances the emission intensity in the phosphor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号