首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adhesion and electrochemical properties of epoxy coatings electrodeposited on hot-dip galvanized steel with and without passive films were investigated during exposure to 3% NaCl. The passive films were formed in hot air, in boiling water and by chromating. Adhesion was measured both by a standardized pull-off method and by swelling in N-methyl pyrrolidone. Pretreatment of hot-dip galvanized steel with passive film formed in hot air increases both dry and wet adhesion strength of the epoxy coating compared to pretreatment with passive film formed in boiling water and chromate coating. The overall increase of wet adhesion for this sample was maintained throughout the whole investigated time period. It was shown that the change in adhesion of epoxy coating on a chromate coating is smallest of all investigated samples, although the initial value of adhesion on this surface had the lowest value. The corrosion stability of coated Zn samples pretreated by different methods, was investigated by electrochemical impedance spectroscopy and in the initial time of exposure to NaCl the highest values of pore resistance were also obtained for the epoxy coating on Zn pretreated in hot air, whereas the epoxy coating on a HDG steel with a chromate coating showed the smallest change in electrochemical properties (pore resistance, coating capacitance, charge-transfer resistance) during prolonged exposure time.  相似文献   

2.
The anticorrosive performance of two inhibitive pigments, zinc chromate and zinc phosphate, was compared using electrochemical impedance spectroscopy (EIS) and the scanning vibrating electrode technique (SVET) in pigment extracts in 0.1 M NaCl. It was observed that zinc was protected from corrosion in both extracts. In tests using hot dip galvanised steel painted with an epoxy primer incorporating the pigments, the SVET detected the anodic and cathodic distribution along the scribes, although no significant differences were observed among the various primers. On the contrary, EIS was able to distinguish processes occurring on the metal surface exposed by the scribe in different samples. For primers with anticorrosive pigment, a time constant at high frequencies was attributed to a layer of protective nature, probably formed by metal ions from the substrate and inhibitive ions leached from the anticorrosive pigments.  相似文献   

3.
The inhibition efficiencies of zinc chromate, barium metaborate, calcium silicate, amino carboxylate, calcium barium phosphosilicate, aluminum triphosphate and a modified zinc phosphate on the corrosion of steel and zinc were determined by polarization experiments on pigment extracts. Zinc phosphate and zinc chromate were the best and were studied further to determine the effect of pH and chloride concentration on their inhibition of steel. Zinc chromate is adversely affected by high concentration of chloride ions, which effect seems to be less pronounced on zinc. A low pH, although increasing the solubility of zinc phosphate, does not increase its efficiency. The pigments were also incorporated into an epoxy-poly(amide) binder, applied to cold-rolled steel and galvanized steel, exposed at a marine exposure station and the degradation monitored by electrochemical impedance spectroscopy. There was a general correlation between the results of pigment extract studies and atmospheric exposure except in the case of phosphate pigments on cold rolled steel.  相似文献   

4.
The corrosion behavior of an epoxy primer containing aluminum powder (10 vol.%) applied on carbon steel and on galvanized steel was examined by electrochemical impedance spectroscopy (EIS). The data show that this coating is more protective when applied onto carbon steel substrates, and that on galvanized steel thicker coatings allow to achieve similar protection levels as those obtained for carbon steel. These effects are probably due to aluminum pigments providing a cathodic protection of the substrate, and to the resulting products precipitating inside the pores of the polymeric coating. Three stages can be distinguished during exposure of the coated specimens. Upon immersion of the coated samples in the test solution, a pre-saturated stage is observed. After a certain period of immersion, which strongly depends on the thickness of the applied coating, a saturation stage is reached in which an effective protection of the metallic substrate against corrosion is achieved. Finally, at sufficiently long exposure times, swelling through the coating eventually leads to the detachment of the coating.  相似文献   

5.
Protective performance of the epoxy primer containing strontium aluminum polyphosphate (SAPP) as a zinc-free phosphate-based anticorrosion pigment is aimed to assess in this work through taking advantage of electrochemical impedance spectroscopy (EIS) and electrochemical noise method (ENM). The absence of zinc offers an excellent environmentally friendly profile to the class of inhibiting compound. In the pigment extracts, the electrochemical techniques revealed superiority of SAPP compared to the conventional zinc phosphate (ZP). The behavior was connected to precipitation of a protective layer on the surface exposed to SAPP. In comparison with ZP, the most effective SAPP content in the protective primer was then determined using EIS.  相似文献   

6.
The influences of the chromate quenching step and the surface chloride contamination levels of galvanized steel on the performance of duplex systems were studied. Steel panels were galvanized in a commercial steel bath adopting three different postdipping procedures. A comparative study of the galvanized steel, both painted and nonpainted, was performed by electrochemical techniques. It was verified that the chloride contamination level of the galvanized steel surfaces is the main cause of duplex system failures. An explanation for the influence of the chromate quenching on the performance of duplex systems was presented.  相似文献   

7.
The paper analyzes the performance of solventborne paint systems applied on carbon steel and hot-dip galvanized steel in a wide range of atmospheric exposures. The study has involved paint systems exposure for 3.5 years in eight natural atmospheres. The atmospheric conditions cover from temperate rural climates to tropical severe marine and Antarctic coastal regions. The paint systems included several alkyds formulated with a variety of pigments (anticorrosive and barrier), epoxies, chlorinated rubber, and zinc-rich (ethyl silicate and epoxy). It has been concluded that in rural and urban atmospheres alkyd systems afford equivalent anticorrosive protection of steel to the epoxy/polyurethane system. The toxic red lead pigment may be replaced in long linseed-oil alkyd primer paints by non-toxic pigments, such as a mixture of micaceous iron oxides (MIO) and black iron oxides or zinc phosphate, without affecting the anticorrosive properties of the paint system. In aggressive atmospheres (industrial, marine), paint systems including zinc-rich primers or applied on galvanized steel must be used, especially in surface regions with coating faults (scribes).  相似文献   

8.
In this study, the quality and durability of powder-coated hot-dip galvanized products have been investigated. Standard steel coupons hot-dip galvanized in conventional and delta (i.e., high temperature) conditions were coated with powder paint systems or a high quality solvent-based system and then subjected to a wide range of test methods representing mild or highly aggressive exposure conditions. Additional variables in the project were the silicon content of the steel and the treatment prior to painting. The use of delta-galvanized steel as a base for painting offers a number of advantages such as much greater hardness and improved paint adhesion. Maximum corrosion protection is observed if the galvanized base is treated with chromate and sequentially powder coated with an epoxy primer followed by a polyester topcoat. Weert Groep. P.O. Box 129, The Netherlands. University of Cincinnati, Dept. of Material Science and Engineering, Cincinnati, OH 45221-0012.  相似文献   

9.
One of the first commercial ion-exchange anticorrosive pigments to be developed was Shieldex® (Si/Ca). Its proposed corrosion protection mechanism, based on the retention of aggressive cations and the subsequent release of calcium cations, has created certain controversy. A number of studies have focused on the anticorrosive behavior of this pigment on carbon steel and galvanized steel to replace chromates (Cr6+) as inhibitor pigment, but none has considered its performance on aluminum or aluminum alloys. In this research, alkyd coatings have been formulated with Si/Ca pigment at different concentrations and applied on aluminum 1050 (Al 99.5%) specimens. These specimens have then been subjected to accelerated tests (condensing humidity, salt spray, and Kesternich) and natural weathering in atmospheres of different aggressivity. Corrosion performance has been also evaluated in the laboratory by electrochemical impedance spectroscopy. The study has also considered an organic coating with zinc chromate anticorrosive pigment for comparative purposes. The results obtained with organic coatings formulated with Si/Ca pigments confirm that they provide corrosion protection of the underlying aluminum substrate, even improving the behavior of the reference zinc chromate in some environmental conditions.  相似文献   

10.
EIS法研究3种配套涂层体系的腐蚀电化学行为   总被引:3,自引:0,他引:3       下载免费PDF全文
采用电化学阻抗谱(EIS)研究了由水性无机富锌底漆、环氧中间漆和氯化橡胶面漆3种涂料配套而成的3种不同涂层体系在3.5%NaCl溶液中的电化学腐蚀行为,考察了氯化橡胶面漆、水性无机富锌底漆/氯化橡胶面漆、水性无机富锌底漆/环氧中间漆/氯化橡胶面漆这3种涂层体系的阻抗谱在浸泡过程中的演化并据此比较了3种涂层体系的防护性能。结果表明,两涂层体系的防护性能比单涂层的还要差,三复合涂层体系的防护性能最好。根据涂层腐蚀电化学阻抗谱特征推测,中间漆在三复合涂层体系中起到了使底漆和面漆结合更加紧密的桥梁作用。  相似文献   

11.
Corrosion electrochemical behavior of chlorinated rubber top coating (single-layer), inorganic zinc-rich primer/chlorinated rubber top coating (double-layers) and inorganic zinc-rich primer/epoxy middle paste/chlorinated rubber top coating (tri-layers) in 3.5 wt% NaCl solution was studied by electrochemical impedance spectroscopy (EIS). A series of impedance spectra of the three coating systems during immersion were measured; and their protective properties were compared according to the spectra. The experimental results showed that, the protective properties of the double-layers coating system were even worse than that of the single-layer coating system; and the tri-layers coating system had the best protective properties in the three coating systems; epoxy middle paste had played a very important role for protective properties of the composite coating system.  相似文献   

12.
Electrochemical behavior of mild steel in the presence of zinc acetylacetonate (Zn(acac)2) and benzimidazole (BIMIDA) was evaluated by electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution and compared to zinc phosphate (ZP) pigment and zinc potassium chromate (ZPC) pigment extracts. Results showed superior performance of Zn(acac)2 and BIMIDA mixture (ZBM) compared to ZP pigment, while it introduced inferior inhibitive action compared to ZPC pigment. The epoxy coatings were formulated with ZBM as anticorrosive additive, ZP and ZPC pigments. The disbonding rate of coated steel follows the order: Blank > ZP > ZBM > ZPC. EIS results showed a complex film could be formed at the hole area for the coatings formulated with ZP, ZBM and ZPC. It is concluded that the stronger the complex film on the surface, the lesser the cathodic disbonding rate would be.  相似文献   

13.
Phosphate-doped polyaniline pigment was prepared by a chemical oxidation method using ammonium persulfate in phosphoric acid media. Fourier transform infrared studies were done to characterize the pigment. The magnesium alloy ZM 21 was coated with polyaniline-pigmented paint, based on an epoxy binder, and the corrosion performance of the coating was studied by potential measurements and electrochemical impedance spectroscopy in 0.1% and 0.5% NaCl solutions. The results were compared with strontium chromate and filler material-pigmented coatings. It was found that the coating containing polyaniline provided similar protection for the magnesium alloy as that offered by chromate-pigmented paint.  相似文献   

14.
Comparative EIS study of pretreatment performance in coated metals   总被引:5,自引:0,他引:5  
Various coated metal samples with different pretreatments were investigated by electrochemical impedance spectroscopy (EIS). Variables were the substrate (cold-rolled steel and hot-dipped galvanized steel), phosphate system (iron and zinc phosphate), post rinse (chromate and silane/zirconium rinse) and paint systems. The corrosion performance was determined on the basis of coating degradation, water uptake and interface delamination of the tested samples. The zinc phosphate performed better than iron phosphate on CRS. The silane/Zr rinse did not perform well in the CRS/iron-phosphate system. However, it showed a better performance than the chromate when used as a post rinse of zinc phosphate. Salt spray test (SST) and adhesion test results of the same samples are also reported in this paper and compared to the EIS data. The correlation among three test methods was poor.  相似文献   

15.
A series of polyurea and polyurethane ceramer coatings were formulated using hexamethylene diisocyanate (HDI) isocyanurate, alkoxysilane‐functionalized HDI isocyanurate, tetraethyl orthosilicate (TEOS) oligomers and cycloaliphatic polyesters. The coatings were prepared as a function of alkoxysilane‐functionalized HDI isocyanurate and TEOS oligomers concentration. Also, the effect of acid catalyst was investigated. The corrosion resistance of polyurea or polyurethane ceramer coating systems were evaluated using a prohesion chamber on aluminium alloy 2024‐T3 substrate. The polyurethane ceramer coatings were compared with the chromate pretreatment and the epoxy‐polyamide primer containing the chromate pigment. In addition to prohesion, the interface between the coating and substrate was characterized using X‐ray photoelectron spectroscopy (XPS). The prohesion data showed that the corrosion was inhibited by the TEOS oligomers. However, high concentrations of TEOS oligomers and acid catalyst produced blistering in the polyurea/polysiloxane ceramer coatings. The prohesion data also showed that the corrosion protection of ceramer coatings performed as well as the chromate pretreatment and competitively with the epoxy primer. From the XPS and prohesion data, a self assembling silicon oxide layer at the metal‐coating interface was proposed.  相似文献   

16.
The incorporation of nano-sized inorganic pigment particles into organic coatings may offer the potential for improving many of their properties, including corrosion resistance, at relatively low loadings. In the present research, titanium dioxide with a crystallite size of 5-10 nm was added to a waterborne organic primer formulation at loadings from 0.1 to 5% (w/w) and applied to hot-dip galvanized steel (HDG) panels. The corrosion resistance of the modified coatings was measured by neutral salt spray corrosion testing and electrochemical impedance spectroscopy (EIS), with an unpigmented film tested for comparison. 3% (w/w) TiO2 appeared to produce an optimum improvement in the corrosion resistance.  相似文献   

17.
One of the most important factors in corrosion prevention by protective coatings is the loss of adhesion of the coating under environmental influence. Thus, adhesion strength is often used when characterizing protective properties of organic coatings on a metal substrate. In this work, the adhesion of different epoxy primers (pigment-free, zinc-rich and chromate-based) was examined on steel. Both the dry and wet adhesion strengths of organic primers were measured directly by a pull-off standardized procedure, as well as indirectly by the NMP test. The corrosion stability of coated samples was investigated by electrochemical impedance spectroscopy. It was shown that under dry test conditions all the samples showed very good adhesion. However, different trends in adhesion for different primers during exposure to the corrosive agent (3% NaCl solution) were observed. The lowest adhesion values were obtained for chromate-based epoxy primer; however, the change in adhesion of this protective system during immersion in 3% NaCl solution for 25 days was the smallest of all investigated samples. Electrochemical impedance measurements in 3% NaCl solution confirmed good protective properties of pigmented epoxy primers on steel, i.e., greater values of pore resistance and charge-transfer resistance, and smaller values of coating capacitance and double-layer capacitance, were obtained for these protective systems.  相似文献   

18.
The electrochemical and transport properties and thermal stability of epoxy coatings electrodeposited on hot-dip galvanized steel and steel modified by Zn–Ni alloys were investigated during exposure to 3% NaCl solution. Zn–Ni alloys were electrodeposited on steel by direct and pulse current. From the time dependence of pore resistance, coating capacitance and relative permittivity of epoxy coating, diffusion coefficient of water through epoxy coating, D(H2O) and thermal stability, it was shown that Zn–Ni sublayers significantly improve the corrosion stability of the protective system based on epoxy coating. Almost unchanged values of pore resistance were obtained over the long period of investigated time for epoxy coatings on steel modified by Zn–Ni alloys, indicating the great stability of these protective systems, due to the existence of the inner oxide phase layer and the outer layer consisting of basic salts.  相似文献   

19.
Wash primer treatment of galvanized iron (GI) structure is widely used before painting in order to improve adhesion. Traditional wash primer contains zinc tetroxy chromate. Due to hazardous nature of chromate, alternate compounds for chromate replacements have been identified. In recent years polyaniline containing coating has been found to protect GI. In this study, a wash primer based on polyaniline has been formulated and its corrosion protection ability of GI has been compared with that of traditional chromate based wash primer by salt spray and EIS test. It has been found that the polyaniline based wash primer is able to protect GI and its corrosion protection performance is similar to chromate based wash primer coating.  相似文献   

20.
研制了一种以钒酸盐阴离子([V10O28]6-)柱撑纳米水滑石防腐颜料替代铬酸盐,用于AZ31镁合金腐蚀防护的有机涂层.研究了水滑石在不同浓度的NaCl溶液里的吸附和离子交换性能,以及钒酸盐缓蚀剂的极化曲线:考察了该水滑石防腐颜料的添加比例对镁合金环氧防腐涂层性能的影响,并通过电化学交流阻抗(EIS)测试技术对各试样进行了性能检测.结果表明,添加了20%(质量分数)水滑石的环氧涂层对镁合金具有较好的防腐作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号