首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
We describe a moving-wire analyzer for measuring 13C in dissolved, involatile organic materials. Liquid samples are first deposited and dried on a continuously spooling nickel wire. The residual sample is then combusted as the wire moves through a furnace, and the evolved CO2 is analyzed by continuous-flow isotope ratio mass spectrometry. A typical analysis requires 1 microL of sample solution and produces a CO2 peak approximately 5 s wide. The system can measure "bulk" delta13C values of approximately 10 nmol of organic carbon with precision better than 0.2 per thousand. For samples containing approximately 1 nmol of C, precision is approximately 1 per thousand. Precision and sensitivity are limited mainly by background noise derived from carbon within the wire. Instrument conditions minimizing that background are discussed in detail. Accuracy is better than 0.5 per thousand for nearly all dissolved analytes tested, including lipids, proteins, nucleic acids, sugars, halocarbons, and hydrocarbons. The sensitivity demonstrated here for 13C measurements represents a approximately 1000-fold improvement relative to existing elemental analyzers and should allow the use of many new preparative techniques for collecting and purifying nonvolatile biochemicals for isotopic analysis.  相似文献   

2.
Carbon isotope ratios in higher-plant organic matter (delta(13)C(plant)) have been shown in several studies to be closely related to the carbon isotope composition of the ocean-atmosphere carbon reservoir, and, in particular, the isotopic composition of CO(2). These studies have primarily been focused on geological intervals in which major perturbations occur in the oceanic carbon reservoir, as documented in organic carbon and carbonates phases (e.g. Permian-Triassic and Triassic-Jurassic boundary, Early Toarcian, Early Aptian, Cenomanian-Turonian boundary, Palaeocene-Eocene Thermal Maximum (PETM)). All of these events, excluding the Cenomanian-Turonian boundary, record negative carbon isotope excursions, and many authors have postulated that the cause of such excursions is the massive release of continental-margin marine gas-hydrate reservoirs (clathrates). Methane has a very negative carbon isotope composition (delta(13)C, ca. 60 per thousand ) in comparison with higher-plant and marine organic matter, and carbonate. The residence time of methane in the ocean-atmosphere reservoir is short (ca. 10 yr) and is rapidly oxidized to CO(2), causing the isotopic composition of CO(2) to become more negative from its assumed background value (delta(13)C, ca. -7 per thousand ). However, to date, only the Early Toarcian, Early Aptian and PETM are well-constrained chronometric sequences that could attribute clathrate release as a viable cause to create such rapid negative delta(13)C excursions. Notwithstanding this, the isotopic analysis of higher-plant organic matter (e.g. charcoal, wood, leaves, pollen) has the ability to (i) record the isotopic composition of palaeoatmospheric CO(2) in the geological record, (ii) correlate marine and non-marine stratigraphic successions, and (iii) confirm that oceanic carbon perturbations are not purely oceanographic in their extent and affect the entire ocean-atmosphere system. A case study from the Isle of Wight, UK, indicates that the carbon isotope composition of palaeoatmospheric CO(2) during the Mid-Cretaceous had a background value of 3 per thousand, but fluctuated rapidly to more positive (ca. +0.5 per thousand ) and negative values (ca. 10 per thousand ) during carbon cycle perturbations (e.g. carbon burial events, carbonate platform drowning, large igneous province formation). Hence, fluctuations in the carbon isotope composition of palaeoatmospheric CO(2) would compromise our use of palaeo-CO(2) proxies that are dependent on constant carbon isotope ratios of CO(2).  相似文献   

3.
We report an automated method for high-precision position-specific isotope analysis (PSIA) of carbon in amino acid analogues. Carbon isotope ratios are measured for gas-phase pyrolysis fragments from multiple sources of 3-methylthiopropylamine (3MTP) and isoamylamine (IAA), the decarboxylated analogues of methionine and leucine, using a home-built gas chromatography (GC)-pyrolysis-GC preparation system coupled to a combustion-isotope ratio mass spectrometry system. Over a temperature range of 620-900 degrees C, the characteristic pyrolysis products for 3MTP were CH4, C2H6, HCN, and CH3CN and for IAA products were propylene, isobutylene, HCN, and CH3CN. Fragment origin was confirmed by 13C-labeling, and fragments used for isotope analysis were generated from unique moieties with > 95% structural fidelity. Isotope ratios for the fragments were determined with an average precision of SD(delta13C) < 0.3% per thousand, and relative isotope ratios of fragments from different sources were determined with an average precision of SD(delta(delta)13C) < 0.5% per thousand. Delta(delta)13C values of fragments were invariant over a range of pyrolysis temperatures. The delta(delta)13C of complementary fragments in IAA was within 0.8% per thousand of the delta(delta)13C of the parent compounds, indicating that pyrolysis-induced isotopic fractionation is effectively taken into account with this calibration procedure. Using delta(delta)13C values of fragments, delta(delta)13C values were determined for all four carbon positions of 3MTP and for C1, C2, and the propyl moiety of IAA, either directly or indirectly by mass balance. Large variations in position-specific isotope ratios were observed in samples from different commercial sources. Most dramatically, two 3MTP sources differed by 16.30% per thousand at C1, 48.33% per thousand at C2, 0.37% per thousand at C3, and 5.36% per thousand at C(methyl). These PSIA techniques are suitable for studying subtle changes in intramolecular isotope ratios due to natural processes.  相似文献   

4.
Yu YX  Wen S  Feng YL  Bi XH  Wang XM  Peng PA  Sheng GY  Fu JM 《Analytical chemistry》2006,78(4):1206-1211
A novel method has been developed for the compound-specific carbon isotope analysis of atmospheric formaldehyde using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The method allows the determination of the delta13C value for atmospheric formaldehyde at nanogram levels with higher precision and lower detection limit. In the present work, atmospheric formaldehyde was collected using NaHSO3-coated Sep-Pak silica gel cartridges, washed out by water, then derivatized by cysteamine of known delta13C value, and the delta13C value of its derivative (thiazolidine) determined by GC/C/IRMS. Finally, the delta13C value of atmospheric formaldehyde could be calculated by a simple mass balance equation between formaldehyde, cysteamine, and thiazolidine. Using three formaldehydes with different delta13C values, calibration experiments were carried out over large ranges of formaldehyde concentrations. The carbon isotope analysis method achieved excellent reproducibility and high accuracy. There was no carbon isotopic fractionation throughout the derivatization processes. The differences in the carbon isotopic compositions of thiazolidine between the measured and predicted values were always <0.5 per thousand, within the specifications of the GC/C/IRMS system. The present method was also compared with the previous 2,4-dinitrophenylhydrazine derivatization method, and this method could be performed with lower analytical error and detection limit. Using this method, four 6-h ambient atmospheric formaldehyde samples were consecutively collected from 8 to 9 March 2005. The results showed that the delta13C values of atmospheric formaldehyde were different during the daytime and nighttime. This method proved suitable for the routine operation and may provide additional insight on sources and sinks of atmospheric formaldehyde.  相似文献   

5.
The measurement of delta15N values of inorganic nitrogen species is an important analytical tool to trace nitrogen species in order to understand nitrogen cycling in aquatic systems. Nitrogen isotope analysis of freshwater ammonium has, however, been hindered by the lack of a simple and reliable technique to measure delta15N values at natural abundance levels. We present a simple and rapid method to concentrate ammonium from freshwater samples for on-line N-isotope ratio determination. Ammonium is collected by adsorption on N-free cation exchange resins. The dried N-loaded exchange resin is then directly combusted to produce N2 gas for subsequent delta15N analysis. The method was evaluated with simulated freshwater solutions containing varying amounts of standard NH4+-N (delta15N = 2.1 per thousand) and potentially interfering inorganic and organic compounds. In general, the cation exchange resin method gives accurate and reproducible delta15N values (sigma1 < 0.3 per thousand; n = 10). Because of adsorption interference, high concentrations of cations in solution may cause ammonium loss but do not result in measurable isotope fractionation. Replicate extractions of the ammonium standard added to water collected from four Swiss lakes demonstrate the good performance of this method when applied to low ionic strength natural water samples with modest concentrations of dissolved organic nitrogen.  相似文献   

6.
Intramolecular carbon isotope ratios reflect the source of a compound and the reaction conditions prevailing during synthesis and degradation. We report here a method for determination of relative (Deltadelta13C) and absolute (delta13C) intramolecular isotope ratios using the volatile lactic acid analogue propylene glycol as a model compound, measured by on-line gas chromatography-pyrolysis coupled to GC-combustion-isotope ratio mass spectrometry. Pyrolytic fragmentation of about one-third of the analyte mass produces optimal fragments for isotopic analysis, from which relative isotope ratios (Deltadelta13C) are calculated according to guidelines presented previously. Calibration to obtain absolute isotope ratios is achieved by quantifying isotope fractionation during pyrolysis with an average fractionation factor, alpha, and evaluated by considering extremes in isotopic fractionation behavior. The method is demonstrated by calculating ranges of absolute intramolecular isotope ratios in four samples of propylene glycol. Relative and absolute isotope ratios were calculated with average precisions of SD(Deltadelta13C) <0.84 per thousand and SD(delta13C) <3.0 per thousand, respectively. The various fractionation scenarios produce an average delta(13)C range of 2 per thousand for each position in each sample. Relative isotope ratios revealed all four samples originated from unique sources, with samples A, B, and D only distinguishable at the position-specific level. Regardless of pyrolysis fractionation distribution, absolute isotope ratios showed a consistent pattern for all samples, with delta13C(3) > delta13C(2) > delta13C(1). The validity of the method was determined by examining the difference in relative isotope ratios calculated through two independent methods: Deltadelta13C calculated directly using previous methods and Deltadelta13C extracted from absolute isotope ratios. Deviation between the two Deltadelta13C values for all positions averaged 0.1-0.2 per thousand, with the smallest deviation obtained assuming equal fractionation across all fragment positions. This approach applies generally to all compounds analyzed by pyrolytic PSIA.  相似文献   

7.
We report a new method developed for the determination of stable carbon isotopic composition of homologous alpha,omega-dicarboxylic acids and phthalic acid isolated from environmental samples such as atmospheric aerosols and snow. Dicarboxylic acids are derivatized with BF3/1-butanol to dibutyl esters, which are analyzed for the stable carbon isotopic composition using a capillary GC interfaced to on-line combustion isotope ratio mass spectrometer. The delta13C values for individual dicarboxylic acid are then calculated from delta13C of 1-butanol and butyl ester derivative using a mass balance equation. The accuracy of the delta13C measurement for C2-C10 diacids is within 0.8 per thousand. We report a few examples of the delta13C ratios of saturated C2-C9 alpha,omega-dicarboxylic acids, unsaturated (maleic, phthalic) diacids, and oxocarboxylic acids in the aerosol and snow samples.  相似文献   

8.
Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry was used to determine the delta15N and delta13C signatures of selected nitroaromatic contaminants such as the explosive 2,4,6-trinitrotoluene (TNT) for derivation of isotopic enrichment factors of contaminant transformation. Parameters for efficient extraction of nitroaromatic compounds (NACs) and substituted anilines from water samples were evaluated by SPME-GC/MS. delta13C signatures determined by SPME-GC/IRMS and elemental analyzer IRMS (EA-IRMS) were in good agreement, generally within +/-0.7 per thousand, except for 2,4-dinitrotoluene (2,4-DNT) and TNT, which showed slight deviations (<1.3 per thousand). Limits of detection (LODs) for delta13C analysis by SPME-GC/IRMS were between 73 and 780 microg L-1 and correlated with the extraction efficiencies of the compounds determined by SPME-GC/MS. Nitrogen isotope measurements by SPME-GC/IRMS were of similar precision (standard deviations <0.8 per thousand) for all NACs except for TNT. delta15N signatures matched the reference values obtained by EA-IRMS within +/-1.3 per thousand (+2.5 per thousand for TNT), but no systematic trend was found for the deviations. LODs of delta15N measurements ranged from 1.6 to 9.6 mg L-1 for nitrotoluenes, chlorinated NACs and DNTs (22 mg L-1 for TNT). The SPME-GC/IRMS method is well suited for the determination of isotopic enrichment factors of various NAC transformation processes and provides so far unexplored possibilities to elucidate behavior and degradation mechanisms of nitroaromatic contaminants in soils and groundwaters.  相似文献   

9.
洪丽玉 《福建分析测试》2002,11(1):1527-1528
本文探讨了用TOC分析仪测定海水样品中溶解有机碳时的一些问题和解决对策。  相似文献   

10.
A new method for the measurement of SI traceable carbon isotope amount ratios using a multicollector inductively coupled mass spectrometer (MC-ICPMS) is reported for the first time. Carbon (13)C/(12)C isotope amount ratios have been measured for four reference materials with carbon isotope amount ratios ranging from 0.010659 (delta(13)C(VPDB) = -46.6 per thousand) to 0.011601 (delta(13)C(VPDB) = +37 per thousand). Internal normalization by measuring boron (11)B/(10)B isotope amount ratios has been used to correct for the effects of instrumental mass bias. Absolute (13)C/(12)C ratios have been measured and corrected for instrumental mass bias and full uncertainty budgets have been calculated using the Kragten approach. Corrected (13)C/(12)C ratios for NIST RM8545 (Lithium Carbonate LSVEC), NIST RM8573 (L-Glutamic Acid USGS40), NIST RM8542 (IAEA-CH6 Sucrose) and NIST RM8574 (L-Glutamic Acid USGS41) differed from reference values by 0.06-0.20%. Excellent linear correlation (R = 0.9997) was obtained between corrected carbon isotope amount ratios and expected carbon isotope amount ratios of the four chosen NIST RMs. The method has proved to be linear within this range (from (13)C/(12)C = 0.010659 to (13)C/(12)C =0.011601), and therefore, it is suitable for the measurement of carbon isotope amount ratios within the natural range of variation of organic carbon compounds, carbonates, elemental carbon, carbon monoxide, and carbon dioxide. In addition, a CO2 gas sample previously characterized in-house by conventional dual inlet isotope ratio mass spectrometry has been analyzed and excellent agreement has been found between the carbon isotope amount ratio value measured by MC-ICPMS and the IRMS measurements. Absolute values for carbon isotope amount ratios traceable to the SI are given for each NIST RM, and the combined uncertainty budget (including instrumental error and each parameter contributing to Russell expression for mass bias correction) has been found to be < 0.1% for the four materials. The advantage of the method versus conventional gas source isotope ratio mass spectrometry measurements is that carbon isotope amount ratios are measured as C(+) instead of CO2(+), and therefore, an oxygen (17)O correction due to the presence of (12)C(17)O(16)O(+) is not required. Organic compounds in solution can be measured without previous derivatization, combustion steps, or both, thus making the process simple. The novel methodology opens new avenues for the measurement of absolute carbon isotope amount ratios in a wide range of samples.  相似文献   

11.
Here we describe an on-line method for measuring delta(37)Cl values of chloride bearing salts, waters, and organic materials using multicollector continuous-flow isotope ratio mass spectrometry (CF-IRMS). Pure AgCl quantitatively derived from total Cl in water, inorganic Cl salts, and biological samples was reacted with iodomethane in evacuated 10-mL stopper sealed glass vials to produce methyl chloride gas. A GV Instruments Multicollector CF-IRMS with CH(3)Cl optimized collector geometry was modified to accommodate a headspace single-sample gas injection port prior to a GC column. The GC column was a 2-m Porapak-Q packed column held at 160 degrees C. The resolved sample CH(3)Cl was introduced to the IRMS source in a helium stream via an open split. delta(37)Cl values were calculated by measurement of CH(3)Cl at m/z 52/50 and by comparison to a reference pulse of CH(3)Cl calibrated to standard mean ocean chloride. Sample CH(3)Cl analysis time was approximately 6 min. Injections of 40 microL of pure CH(3)Cl gas yielded a repeatability (+/-SD) of +/-0.06 per thousand for delta(37)Cl (n = 10). Combined GC and IRMS source linearity for CH(3)Cl was <0.2 per thousand/nA (V) peak height. External repeatability, based on processing of seawater and NaCl reference solutions, was better than +/-0.08 per thousand. The smallest sample for delta(37)Cl analysis by this method was approximately 0.2 micromol of Cl. Selected results from a river basin and biological samples study illustrate the potential of on-line chlorine isotope assays in environmental pollution studies.  相似文献   

12.
The relevance of both modern and fossil carbon contamination as well as isotope fractionation during preparative gas chromatography for compound-specific radiocarbon analysis (CSRA) was evaluated. Two independent laboratories investigated the influence of modern carbon contamination in the sample cleanup procedure and preparative capillary gas chromatography (pcGC) of a radiocarbon-dead 3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169) reference. The isolated samples were analyzed for their 14C/12C ratio by accelerator mass spectrometry. Sample Delta14C values of -996 +/- 20 and -985 +/- 20 per thousand agreed with a Delta14C of -995 +/- 20 per thousand for the unprocessed PCB 169, suggesting that no significant contamination by nonfossil carbon was introduced during the sample preparation process at either laboratory. A reference compound containing a modern 14C/12C ratio (vanillin) was employed to evaluate process contamination from fossil C. No negative bias due to fossil C was observed (sample Delta14C value of 165 +/- 20 per thousand agreed with Delta14C of 155 +/- 12 per thousand for the unprocessed vanillin). The extent of isotopic fractionation that can be induced during pcGC was evaluated by partially collecting the vanillin model compound of modern 14C/12C abundance. A significant change in the delta13C and delta14C values was observed when only parts of the eluting peak were collected (delta13C values ranged from -15.75 to -49.91 per thousand and delta14C values from -82.4 to +4.71 per thousand). Delta14C values, which are normalized to a delta13C of -25 per thousand, did not deviate significantly (-58.9 to -5.8 per thousand, considering the uncertainty of approximately +/-20 per thousand). This means that normalization of radiocarbon results to a delta13C of -25 per thousand, normally performed to remove effects of environmental isotope fractionation on 14C-based age determinations, also cor-rects sufficiently for putative isotopic fractionation that may occur during pcGC isolation of individual compounds for CSRA.  相似文献   

13.
Isotopomers 12CO2 and 13CO2 absorbed into polystyrene films provide narrow, sharp, and well-resolved IR absorption bands for the nu3 antisymmetric stretching mode. This is exploited to set up an inexpensive FT-IR-based method for the measurement of the carbon isotope ratio. Accuracy of 2.5 per thousand delta13C units is readily achieved already at a low resolution of 2 cm(-1).  相似文献   

14.
We have developed a rapid and simple measurement system for both content and stable isotopic compositions (13C and 18O) of atmospheric CO, using continuous-flow isotope ratio mass spectrometry by simultaneously monitoring the CO+ ion currents at masses 28, 29, and 30. The analytical system consisted sequentially of a sample trapping port (liquid nitrogen temperature silica gel and molecular sieve 5A), a gas dryer, a CO purification column (molecular sieve 5A), a cryofocusing unit, and a final purification column using a GC capillary. Analytical precision of 0.2 per thousand for 13C and 0.4 per thousand for 18O can be realized for samples that contain as little as 300 pmol of CO within 40 min for one sample analysis. Analytical blanks associated with the method are less than 1 pmol. The extent of analytical error in delta13C due to mass-independent fractionation of oxygen in natural CO is estimated to be less than 0.3 per thousand. Based on this system, we report herein a kinetic isotopic effect during CO consumption in soil.  相似文献   

15.
Nitrite is an important intermediate species in the biogeochemical cycling of nitrogen, but its role in natural aquatic systems is poorly understood. Isotopic data can be used to study the sources and transformations of NO2- in the environment, but methods for independent isotopic analyses of NO2- in the presence of other N species are still new and evolving. This study demonstrates that isotopic analyses of N and O in NO2- can be done by treating whole freshwater or saltwater samples with the denitrifying bacterium Stenotrophomonas nitritireducens, which selectively reduces NO2- to N2O for isotope ratio mass spectrometry. When calibrated with solutions containing NO2- with known isotopic compositions determined independently, reproducible delta15N and delta18O values were obtained at both natural-abundance levels (+/-0.2-0.5 per thousand for delta15N and +/-0.4-1.0 per thousand for delta18O) and moderately enriched 15N tracer levels (+/-20-50 per thousand for delta15N near 5000 per thousand) for 5-20 nmol of NO2- (1-20 micromol/L in 1-5 mL aliquots). This method is highly selective for NO2- and was used for mixed samples containing both NO2- and NO3- with little or no measurable cross-contamination. In addition, mixed samples that were analyzed with S. nitritireducens were treated subsequently with Pseudomonas aureofaciens to reduce the NO3- in the absence of NO2-, providing isotopic analyses of NO2- and NO3- separately in the same aliquot. Sequential bacterial reduction methods like this one should be useful for a variety of isotopic studies aimed at understanding nitrogen cycling in aquatic environments. A test of these methods in an agricultural watershed in Indiana provides isotopic evidence for both nitrification and denitrification as sources of NO2- in a small stream.  相似文献   

16.
Upon closer inspection, the classical view of the synchronous relationship between tropospheric methane mixing ratio and Greenland temperature observed in ice samples reveals clearly discernable variations in the magnitude of this response during the Late Pleistocene (<50kyr BP). During the Holocene this relationship appears to decouple, indicating that other factors have modulated the methane budget in the past 10kyr BP. The delta13CH4 and deltaD-CH4 of tropospheric methane recorded in ice samples provide a useful constraint on the palaeomethane budget estimations. Anticipated changes in palaeoenvironmental conditions are recorded as changes in the isotope signals of the methane precursors, which are then translated into past global delta13CH4 and deltaD-CH4 signatures. We present the first methane budgets for the late glacial period that are constrained by dual stable isotopes. The overall isotope variations indicate that the Younger Dryas (YD) and Preindustrial Holocene have methane that is 13C- and 2H-enriched, relative to Modern. The shift is small for delta13CH4 (approx. 1 per thousand) but greater for deltaD-CH4 (approx. 9 per thousand). The YD delta13CH4-deltaD-CH4 record shows a remarkable relationship between them from 12.15 to 11.52kyr BP. The corresponding C- and H-isotope mass balances possibly indicate fluctuating emissions of thermogenic gas. This delta13CH4-deltaD-CH4 relationship breaks down during the YD-Preboreal transition. In both age cases, catastrophic releases of hydrates with Archaeal isotope signatures can be ruled out. Thermogenic clathrate releases are possible during the YD period, but so are conventional natural gas seepages.  相似文献   

17.
Spectro-fluorescence signature (SFS) of water samples contains information that may be used to quantify dissolved organic carbon (DOC) if combined with multivariate analyses. A model was built through SFS and partial least squared (PLS) regression. The SFSs of 219 samples of natural water along the Raritan River and Millstone River watersheds located in central New Jersey, and their corresponding DOC concentrations were used to build the model. Calibration, full cross-validation, and prediction performances of various models were statistically compared before optimal model selection. The final selected model, tested on the Passaic River watershed in northern New Jersey, provided a bias of 0.028 mg/l and a root mean squared error of prediction (RMSEP) of 0.35 mg/l. Linked to PLS, SFS can be a quality and cost effective method to perform on-line rapid DOC measurements.  相似文献   

18.
A new system has been developed for the determination of total organic carbon (TOC) and inorganic carbon (IC) or total inorganic carbon (TIC) in waters. Only nonvolatile organic compounds can be detected through the present method. The system presented in this work is based on the measurement of the carbon atomic emission intensity in inductively coupled plasma atomic emission spectrometry (ICP-AES). This way, the organic matter does not undergo any preoxidation step. A semiautomatic accessory connected to the spectrometer separates the different carbon fractions (i.e., organic and inorganic). Because most of the solutions used in the present work did not contain suspended solid particles, the actual parameter that was determined was the dissolved organic carbon (DOC). The present system exhibits good sensitivities compared to those provided by conventional TOC and IC determination methods. The limits of detection obtained in the present work have been 0.07 and 0.0007 mg/L C in terms of TOC and IC, respectively. Furthermore, the system is able to handle high-salt-content solutions. This fact suggests that it would be possible to analyze seawater samples, avoiding some of the problems encountered with conventional methods, such as system blocking or interferences. The TOC and IC values found for natural samples are very close to those measured using conventional methods. The ICP-AES method has been successfully used in two interesting applications: (i) monitoring the efficiency of a water treatment plant and (ii) determining the contents of dissolved carbon dioxide, on one hand, and that of carbonate and bicarbonate, on the other, in the same sample.  相似文献   

19.
Determination of compound-specific carbon isotope values by continuous flow isotope ratio mass spectrometry is impacted by variation in several routine operating parameters of which one of the most important is signal size, or linearity. Experiments were carried out to evaluate the implications of these operating parameters on both reproducibility and accuracy of delta13C measurements. A new method is described for assessing total instrumental uncertainty of routine compound-specific delta13C analysis, incorporating both accuracy and reproducibility. These findings have important implications for application of compound-specific isotope analysis in environmental geochemistry and in particular for the rapidly developing field of isotopic investigation of biodegradation and remediation of organic chemicals in contaminant hydrogeology.  相似文献   

20.
Recent advances in gas chromatography combustion-isotope ratio mass spectrometry (GCC-IRMS) has made compound-specific isotope analysis routine, but reports on position-specific isotopic analysis are still scarce. On-line GC-pyrolysis (Py) coupled to GCC-IRMS is reported here for isolation and isotopic characterization of alaninol and phenethylamine, analogues of alanine and phenylalanine, respectively. Ideally, pyrolytic fragments will originate from unique sites within the parent molecule, and isotope ratios for each position within the parent can either be measured directly or calculated from fragment isotope ratios without substantially degrading the analytical precision. Alaninol pyrolysis yielded several fragments, of which CO and CH4 were used for isotope ratio calculations. Isotope labeling experiments showed that CO derived entirely from the C(1) position, while all three positions of alaninol contributed to CH4 (29.0 +/- 0.3% from C(1), 3.6 +/- 0.2% from C(2), and 66.9 +/- 1.1% from C(3)). We demonstrate iterative use of mass balance to calculate isotope ratios from all positions despite the nonideal positional fidelity of CH4. Pyrolysis of phenethylamine generated benzene and toluene fragments. Benzene derived entirely from C(ring), and toluene was proportionately formed from C(3) and C(ring). Relative intramolecular isotope ratios (Deltadelta13C) were calculated directly from delta13C of fragments or indirectly by mass balance. Though the C(3) isotope ratio was calculated from the benzene and toluene fragments, propagation of errors showed that the final precision of the determination was degraded due to the small contribution that C(3) makes to toluene. Samples of each amino acid from four different vendors showed natural variability between sources, especially at the C(1) position of alaninol (range of Deltadelta13C approximately 50 per thousand). The average precision was SD(Deltadelta13C) < 0.20 per thousand for directly measured positions of alaninol and phenethylamine. The precision of indirectly measured positions was poorer (SD(Deltadelta13C) = 0.94 per thousand for alaninol, 6.54 per thousand for phenethylamine) due to propagation of errors. These data demonstrate that GC-Py-GCC-IRMS data can be used to extract high-precision isotope ratios from amino acids despite nonideal positional fidelity in fragments and that natural intramolecular variability in delta13C can be used to distinguish different sources of amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号