首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
锂离子电池正极材料Li2FeSiO4/C的微波合成   总被引:5,自引:0,他引:5  
采用高能球磨结合微波合成工艺,以Li2CO3、FeC2O4-2H2O、纳米SiO2和葡萄糖为原料合成锂离子电池正极材料Li2FeSiO4/C.利用X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电测试等方法对该材料的结构、表观形貌及电化学性能进行表征.考察超导电碳黑的添加、微波处理时间以及微波加热温度等对Li2FeSiO4/C材料合成及其性能的影响.结果表明:以超导电碳黑为微波耦合剂,采用微波合成法在650 ℃下处理10 min可快速制备具有正交结构的Li2FeSiO4/C材料;获得的Li2FeSiO4/C材料颗粒细小均匀,具有较好的电化学性能;在60 ℃下以C/20对Li2FeSiO4/C材料进行充放电时,其首次放电容量为121.7 mA-h/g,10次循环后其放电容量仍保持为119.2 mA-h/g.  相似文献   

2.
利用V2O5-nH2O湿凝胶,LiOH.H2O、NH4H2PO4和C为原料,通过低温碳热还原法合成了锂离子电池正极材料Li3V2(PO4)3.考察了不同合成温度、时间对产物晶形结构、形貌和电化学性能的影响.结果表明,当合成温度和时间分别为550℃和12 h时,所合成的Lj3V2(PO4)3样品属于纯的单斜晶系,且颗粒分布均匀.该样品以O.2 C充放电,首次放电容量为130 mAh.g-1,循环30次后容量为124 mAh.g-1.  相似文献   

3.
以Li OH·H2O,Fe SO4·7H2O,H3PO4、Ni SO4、Mn SO4为原料,采用水热法合成了Li Fe1-xNixPO4和Li Fe1-xMnxPO4。采用XRD、FESEM分析了正极材料的组成、结构及形貌,利用电池测试仪测试了正极材料的电化学性能。结果表明:镍、锰掺杂Li Fe PO4具有较好的充放电性能。Li Fe0.9Mn0.1PO4的首次充放电比容量分别为143.5、143 m Ah/g,Li Fe0.95Ni0.05PO4的首次充放电比容量分别为132、131 m Ah/g,离子掺杂能显著提高材料的充放电比容量。  相似文献   

4.
湿化学法合成LiNiVO4纳米粉体及其电化学性能   总被引:1,自引:0,他引:1  
以NH4VO3,LiCl2和NiCl2等为原料,以氨水为pH调节剂,采用超声凝胶方法制备了LiNiVO4纳米晶。并采用XRD,TEM,IR,DTA和TG等分析手段对产物进行了表征,通过差热分析对其合成活化能进行了研究。发现在超声功率为300W时,于500℃下保温1h,可以合成10nm左右的LiNiV04微晶颗粒,其合成活化能为47.7kJ/mol。电化学性能测试结果表明,在0.2mA/cm。充放电流密度和3.0V~4.8V电压范围内,首次充电容量为103mAh/g,放电容量为75mAh/g,循环次数达4次后,放电容量还有62mAh/g,明显优于目前所报道的同类材料。  相似文献   

5.
通过碳热还原法合成了锂离子电池正极材料Li3V2(PO4)3,考察了不同合成温度、时间对产物晶形结构、形貌和电化学性能的影响。结果表明,当合成温度、时间分别为800℃,20h时,所合成的样品属于单斜晶系,且粒度大小分布比较均匀,该材料以0.2C充放电,其首次放电容量为120mAh·g^-1,循环30次后其比容量达108mAh·g^-1。  相似文献   

6.
水热法合成LiFePO4的形貌和反应机理   总被引:9,自引:3,他引:6  
以分析纯的FeSO4、H3PO4和LiOH为原料,用水热合成法得到纯度高、结晶好的纳米LiFePO4.x射线衍射和SEM分析结果表明,当实验温度为120~150℃,时间为5~15 h时,随反应温度的提高和反应时间的延长,LiFePO4从不规则的纳米颗粒团聚体逐渐生长为厚200 nm、长800 nm左右的规则矩形薄片.研究发现,在合成过程中,首先合成中间产物Li3PO4,然后与Fe2 反应形成LiFePO4.水热合成产物经550℃聚丙烯裂解碳包覆处理后,以0.05 C充放电,可逆电容量达到163 mA·h·g-1,以0.5 C充放电,可逆电容量达到144 mA·h·g-1.  相似文献   

7.
锂离子电池正极材料Li3V2(PO4)3的合成与性能研究   总被引:1,自引:1,他引:0  
以LiAc·2H<,2>O、V<,2>O<,5>、NH<,4>H<,2>PO<,4>、蔗糖和乙二醇为原料,采用液相多元醇法合成了锂离子电池正极材料Li<,3>V<,2>(PO<,4>)<,3>,研究了烧结温度对产物电化学性能的影响.XRD、SEM和充放电测试表明:在800℃下烧结10 h合成的样品为单斜晶系;在0.1C、3.0~4.3 V下充放电的首次放电比容量为126 mAh·g<'-1>,第20次循环的比容量为120 mAh·g<'-1>.  相似文献   

8.
新型锂离子电池正极材料Li3V2(PO4)3的合成及其性能   总被引:9,自引:0,他引:9  
以LiOH·H2O、V2O5和NH4H2PO4为原料,C为还原剂,采用高温固相法合成了锂离子电池正极材料磷酸钒锂(Li3V2(PO4)3).考察了合成温度等条件对产物组成和晶相的影响.结果表明:随着焙烧温度的升高,杂相的衍射峰相对强度逐渐减弱,当煅烧温度达到800℃时,杂相衍射峰消失,所得样品为纯相的Li3V2(PO4)3样品;按Li、V、P的摩尔比为3:2:3将原料在800℃下焙烧24 h,合成得到正极材料.该材料在0.1 C充放电制度下,首次充电比容量达到135 mA·h/g,首次放电比容量130 mA·h/g,充放电效率达96.3%;经过20次循环后,放电容量仍然高达110 mA·h/g.对经过20次循环后的样品进行了X射线衍射分析,结果发现,经过20次循环后样品仍然具有单斜晶体结构,样品各主要衍射峰强度都急剧减弱,说明样品在充放电过程中晶体结构发生了变化;采用最小二乘法对样品充放电前后的晶胞参数进行了计算,发现样品在经过充放电循环后晶胞参数都有不同程度的增加,晶胞体积增大0.6%左右.  相似文献   

9.
以Fe2O3为铁源,采用高温固相法制备了Y3+掺杂的LiFePO4/C复合材料。利用TG-DSC、XRD、SEM、恒电流充放电等手段对材料的合成反应历程、粉体颗粒形貌以及电化学性能进行了研究。结果表明:Fe3+在300~550℃间被还原为Fe2+,经过650℃煅烧后,形成晶型单一的橄榄石结构晶体。LiFe0.98Y0.02PO4/C样品在0.2 C倍率下的首次放电比容量达到了151.6 mA.h/g。  相似文献   

10.
以NH4H2PO4、Li2CO3和V2O5为原料,采用微波法快速合成了锂离子电池正极材料Li3V2(PO4)3。考察了微波功率、加热时间及产品中的理论碳含量对材料物理及电化学性能的影响。添加的乙炔黑具有还原剂、微波吸收体及导电剂的多重作用。XRD测试表明采用该法可以获得单相的Li3V2(PO4)3。电化学测试表明含2%C的Li3V2(PO4)3具有较好的充放电性能,充放电电流密度为7mA·g-1时,首次放电比容量为115.7mAh·g-1,20次循环后容量保持率为87.5%。与传统方法相比,微波法具有工艺简单,效率高,经济性好的优点。  相似文献   

11.
用化学沉淀法制备了Mg^2+、Al^3+、Ti^4+、V^5+和Ni^2+掺杂的磷酸铁锂,用恒电流充放电方法测量掺杂LiFePO4的充放电性能,用x射线衍射和里特沃尔特方法表征了掺杂LiFePO4的晶体结构。研究表明,少量金属离子掺杂能有效地提高LiFePO4的大电流放电性能,其中Li1-xTixFePO4、Li1-xVxFePO4和Li1-xNixFePO4以2C速率充放电时,放电比容量在120mAh/g以上,循环20次后容量保持率在80%以上。主要原因是掺杂金属离子以固溶体形式存在,并占据锂的位置,改变了晶体中原子间距离和位置,引起晶胞收缩和Li-O原子间平均距离增加,形成了有利于锂离子脱嵌的结构。  相似文献   

12.
Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precursors of LiFePO4, LiFePO4/C composite and the resultant products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and the electrochemical performances were investigated by galvanostatic charge and discharge tests. The precursors composed of amorphous Fe3(PO4)2·xH2O and crystalline Li3PO4 obtained in the co-precipitation processing have a sphere-like morphology. The spherical LiFePO4 derived from the calcinations of the precursor at 700 ℃ for 10 h in a reduction atmosphere shows a discharge capacity of 119 mAh·g -1 at the C/10 rate, while the LiFePO4/C composite with 10wt.% carbon addition exhibits a discharge capacity of 140 mAh·g -1.The electrochemical performances indicate that the LiFePO4/C composite has a higher specific capacity and a more stable cycling performance than the bare olivine LiFePO4 due to the carbon addition enhancing the electronic conductivity.  相似文献   

13.
采用分步碳包覆法合成LiFePO4/C复合材料。首先,将原料Fe2O3、NH4H2PO4和葡萄糖经过固相反应合成Fe2P2O7/C复合材料,再将Fe2P2O7/C与前驱体Li2CO3、葡萄糖混合,通过二次碳包覆工艺合成LiFePO4/C复合材料,并考察合成温度对LiFePO4/C复合材料电化学性能的影响。采用X射线衍射、扫描电镜、差热-热重分析、电化学阻抗谱(EIS)和充放电测试对材料的性能进行表征。结果表明:以制取的Fe2P2O7/C为前驱体合成的LiFePO4/C复合材料具有较好的物理和电化学性能,材料的振实密度达1.26 g/m3,0.1C放电容量为158.3 mA.h/g,1C初次放电比容量达到140 mA.h/g。  相似文献   

14.
Ti4+-mixed FePO4·xH2O precursor was prepared by co-precipitation method,with which Ti4+ cations were added in the process of preparing FePO4·xH2O to pursue an effective and homogenous doping way.Ti4+-doped LiFePO4 was prepared by an ambient-reduction and post-sintering method using the as-prepared precursor,Li2CO3 and oxalic acid as raw materials.The samples were characterized by scanning electron microscopy (SEM),X-ray diffractometry (XRD),electrochemical impedance spectroscopy (EIS),and electrochemical charge/discharge test.Effects of Ti4+-doping and sintering temperature on the physical and electrochemical performance of LiFePO4 powders were investigated.It is noted that Ti4+-doping can improve the electrochemical performance of LiFePO4 remarkably.The Ti4+-doped sample sintered at 600 ℃ delivers an initial discharge capacity of 150,130 and 125 mA·h/g with 0.1C,1C and 2C rates,respectively,without fading after 40 cycles.  相似文献   

15.
以FeSO4·7H2O、H3PO4、H2O2和尿素为原料,采用均匀沉淀法制备LiFePO4的前驱体FePO4·xH2O,研究表面活性剂PEG对前驱体FePO4·xH2O形貌的影响。并将获得的FePO4·xH2O与Li2CO3及葡萄糖混合后合成LiFePO4/C。利用XRD、SEM、循环伏安测试、电化学性能测试、交流阻抗测试等手段对LiFePO4/C进行表征。结果表明:当不添加表面活性剂PEG时,FePO4·xH2O颗粒呈球形,但团聚现象严重;添加PEG后,颗粒较分散,形貌为多面体,合成的LiFePO4/C在0.1C时的首次放电比容量为151.0 mA·h/g,倍率性能好,振实密度达1.44 g/cm3。  相似文献   

16.
反应物中锂元素的量对LiFePO4/C电化学性能的影响   总被引:1,自引:0,他引:1  
以Fe2O3和LiH2PO4为原料,葡萄糖为碳源,采用碳热还原法合成了LiFePO4/C正极材料,考察了反应物中锂元素的量对正极材料LiFePO4/C电化学性能的影响。用X射线衍射、扫描电镜(SEM)和恒电流充放电测试和循环伏安法对正极材料的结构、形貌以及电化学性能进行了研究。结果表明:当反应物中额外添加锂元素的量是理论量的10%时,制得的正极材料的电化学性能最佳,在0.2和1C(1C=170mA/g)的充放电倍率下,首次放电比容量分别为156.3和137.5mAh/g,经过20次充放电循环后,容量基本保持不变。  相似文献   

17.
通过对原料二水磷酸铁的预包覆处理,合成碳包覆磷酸铁锂材料。采用了X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对合成的磷酸铁锂材料结构和微观形貌进行表征,同时考察了其电化学性能。结果表明,对磷酸铁进行碳预包覆能有效提高最终合成产物的电化学性能,在对磷酸铁原料进行1.34%碳含量的包覆后,以此为原料合成磷酸铁锂材料,得到的磷酸铁锂材料含碳量为2.38%时,10C放电容量达到120.7mAh/g。  相似文献   

18.
通过固相反应制备了Mg2+和Co4+复合掺杂的LiFePO4电极材料。采用X射线衍射、恒电流充放电和循环伏安研究复合掺杂对 LiFePO4结构和电化学性能的影响。结果表明:复合掺杂能够提高 LiFePO4的首次放电比容量,0.1C和1C的放电容量分别达到147.2mA·h/g 和133.3mA·h/g。循环伏安测试结果表明:复合掺杂改善了LiFePO4的导电性能,增强了Li+的脱嵌可逆性。  相似文献   

19.
采用LiAc·2H2O作为锂源,利用熔盐碳热还原方法在较低的烧结温度和较短的烧结时间内(650℃,4h)合成纯相LiFePO4/C材料。扫描电镜照片显示这种方法合成的材料粒径大约为1μm,小于用Li2CO3作为锂源合成的材料。电化学测试表明,采用LiAc·2H2O作为锂源合成的材料表现出了高的放电容量和良好的倍率循环性能:在0.5C和5C倍率下,其首次放电容量分别为148mA.h/g和115mA.h/g;50次循环后,容量保持率分别为93%和89%。  相似文献   

20.
以LiH2PO4和FeC2O4.2H2O为原料,聚乙烯醇为碳源,通过机械化学活化辅助固相法合成原位碳包覆的LiFePO4材料;考察合成温度对LiFePO4/C材料晶体结构、物理和电化学性能的影响。结果表明:700℃下处理的产物结晶良好、分布均匀、颗粒细小;在最佳的热处理条件下,热解碳在LiFePO4颗粒表面形成了良好的纳米导电层,LiFePO4/C材料在0.1C、0.5C、1C和2C倍率下放电比容量分别为155.7、150.1、140.1和130 mA.h/g,且材料在0.1~2C范围内充放电都有很平稳的平台,极化小,并具有较高的高倍率(2C)放电比容量和较好的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号