首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations and modeling results are presented to explore the response of a multi-basin, fjord-type lake to episodic wind forcing. Field observations show that abrupt cooling and warming events (magnitude greater than 5°C d-1) lasting 3–6 days in a large, salmon-bearing river (Quesnel River) are due to upwelling in its upstream lake (Quesnel Lake) during the summer, stratified season. Within the lake, vertical displacement of isotherms in the vicinity of the river mouth associated with this upwelling is shown to be forced by wind events longer than one quarter of the fundamental seiche period and of sufficient magnitude that the Wedderburn number approaches one. Upwelling occurs nearly-simultaneously throughout a smaller basin adjacent to the outflow (West Basin) that is separated from the Main Basin of Quesnel Lake by a sill and contraction. Wind-driven water fluxes across the sill are estimated using a conceptual model based on volume and heat budgets. These estimates provide an upper bound for flow across the sill and suggest that exchange flow may at times be internally hydraulically controlled, with epilimnetic velocities of up to ∼25 cm/s. Computed fluxes suggest the West Basin hypolimnion has a residence time of 6-8 weeks during the summer stratified period with each upwelling episode irreversibly exchanging 25–30% of the hypolimnetic volume with the rest of the lake. Implications of such events are profound for salmon bearing rivers wherein the thermal habitat is critical to migration success.  相似文献   

2.
A hydrodynamic model that includes ice processes and is optimized for parallel processing was configured for Lake Erie in order to study the ice–water coupling processes in the lake. A hindcast from April 2003 to December 2004 with hourly atmospheric forcing was conducted. The model reproduced the seasonal variation of ice cover, but the development of ice extent in January and its decay in March somewhat preceded the observations. Modeled lake circulation in ice-free seasons is consistent with previous studies for Lake Erie. Thermal structure of the lake was reasonably comparable to both satellite-derived observations and in-situ measurements, with mean differences ranging from − 2 °C to 4 °C, depending on the season. The impacts of ice–water stress coupling and basal melting of ice were examined based on numerical experiments. The results show that: 1) ice–water stress coupling significantly dampens the subjacent lake circulation in winter due to packed ice cover that slows down the surface water, and 2) basal melting of ice contributes to widespread ice cover in the lake. The demonstrated model validity could lead to further studies of ice–water processes in the lake, including interannual variation and impacts on ecosystems.  相似文献   

3.
Nitrate concentrations in Lake Superior increased fivefold between 1900 and 1980, and have remained nearly constant since that time. Such rapid changes in concentration in a lake with a long hydraulic residence time (~ 190 years) are surprising. We developed a model to better understand the causes of the historical changes and to predict future changes in nitrate concentrations. Historical loadings were reconstructed based on average national NOx emissions estimates, recent (past ~ 30 years) atmospheric N deposition data, recent tributary concentration data, and basin-wide runoff estimates. Increases in atmospheric N deposition alone were insufficient to have resulted in the observed trends. However, model runs combining increased atmospheric deposition with increased tributary N loading and/or decreased burial + denitrification mid-century reproduced the observed accumulation of N. Because internal N fluxes are an order of magnitude greater than external fluxes, relatively small changes in the lake's internal N cycle may produce relatively large changes in total N concentrations. Land-use changes in the watershed, particularly increases in logging activity, may have altered riverine N inputs. Regardless of the historical mechanisms leading to the rise in nitrate concentrations, it appears as though the system is currently at or is approaching peak N content.  相似文献   

4.
Hypoxia and cyanobacterial blooms were extensive in Lake Simcoe during the 1980s and are still a problem to a lesser degree despite extensive nutrient load reduction from the catchment basin. The continuing signs of productivity indicate a potential internal phosphorus (P) source. Internal P load, as a redox-dependent release from bottom sediments, is hard to determine in a large, relatively shallow and partially unstratified lake such as Lake Simcoe. Of the lake's three major basins, only Kempenfelt Bay stratifies long enough to develop hypoxia in the stagnant summer hypolimnion. The following indications of sediment P release are available from historic data: 1) hypolimnetic hypoxia still occurs in Kempenfelt Bay although the hypoxic factor (number of days that an area equal to the bay's surface area is overlain by water of ≤ 2 mg/L dissolved oxygen, DO) has decreased substantially and significantly from 15.8 d/yr (1980–1994) to 4.0 d/yr (1995–2011); 2) hypoxic factors for other lake sections and at different DO levels also indicate widespread hypoxia; 3) concentrations of redox dependent metals, Fe and Mn, increase with depth; and 4) euphotic zone P and chlorophyll concentrations increase and water clarity decreases during fall turnover. Cyanobacterial blooms appear to occur in response to internal load as supported by occasional cyanobacteria counts. These indicators provide evidence that internal loading is likely occurring and affecting the water quality in Lake Simcoe. We expect that further monitoring, specific for internal load, will corroborate these results.  相似文献   

5.
Urmia Lake in the northwest of Iran is the second largest hyper-saline lake worldwide. During the past two decades, a significant water level decline has occurred in the lake. The existing estimations for the lake water balance are widely variable because the lake bathymetry is unknown. The main focus of this study is to extract the volume–area–elevation (V–A–L) characteristics of Urmia Lake utilizing remote sensing data and analytical models. V–A–L equations of the lake were determined using radar altimetry data and their concurrent satellite-derived surface data. Next, two approximate models, a power model (PM) and a truncated pyramid model (TPM), were parameterized for Urmia Lake and checked for accuracy. Results revealed that in comparison with the satellite-derived reference volume–elevation equation, the PM slightly over-predicts the volume of Urmia Lake while the TPM under-estimates the lake storage. Variations of the lake area and volume between 1965 and 2011 were examined using the developed V–A–L equations. Results indicated that the lake area and volume have declined from the historical maximum values by 2200 km2 and 33 km3, respectively. To restore Urmia Lake to a level to maintain ecological benefits, 13.2 km3 of water is required. This study demonstrates the use of remote sensing data of different types to derive V–A–L equations of lakes. Substituting satellite-derived V–A–L equations for common empirical formulas leads to more accurate estimations of a lake water balance, which in turn, provides insight to water managers for properly assessing and allocating water resources to downstream ecosystems.  相似文献   

6.
Mercury cycling in Lake Superior and Lake Michigan was evaluated based on measurements of mercury levels, modeling of evasional fluxes, and development of first-order mass balance models. Total mercury, methylmercury, and dissolved gaseous mercury were measured on sampling cruises in Lake Michigan (2005) and Lake Superior (2006). Average total mercury concentrations in unfiltered surface water were higher in Lake Michigan (420 ± 40 pg/L) compared to Lake Superior (210 ± 20 pg/L). Methylmercury levels were below the detection limit in Lake Michigan. Larger sample volumes were collected to lower detection limits in Lake Superior in 2006 and methylmercury levels averaged 7 ± 6 pg/L. Dissolved gaseous mercury concentrations were also higher in Lake Michigan (27 ± 7 pg/L) compared to Lake Superior (14 ± 8 pg/L). Evasional fluxes were estimated using a two-film model for air–water exchange. The annual evasional flux in Lake Michigan was determined to be ~ 380 kg/yr from Lake Michigan and ~ 160 kg/yr from Lake Superior. Total mercury burdens in each lake were estimated to be ~ 2500 kg in Superior and ~ 2100 kg in Lake Michigan demonstrating that evasional fluxes play an important role in the mass balance of each lake, particularly Lake Michigan. A simple first-order mass balance model demonstrates the importance of air–water exchange and sedimentation as primary removal processes for Hg in each lake. Uncertainties in the mass balance model are highlighted due to lack of key data, particularly in Lake Superior.  相似文献   

7.
As part of the U.S. Great Lakes Fish Monitoring and Surveillance Program (GLFMSP), more than 300 lake trout (Salvelinus namaycush) and walleye (Stizostedion vitreum vitreum) collected from the Laurentian Great Lakes each year from 2004 to 2009, have been analyzed for total toxaphene and eight selected congeners. The analytical results show fish toxaphene concentrations are quite different among lakes. Between 2004 and 2009, Lake Superior lake trout had the highest concentration (119 to 482 ng/g) and Lake Erie walleye had the lowest concentration (18 to 47 ng/g). Combining these results with the historical total toxaphene data (1977–2003), temporal changes were examined for each lake. Because of different analytical methods used in the previous studies, the historical data were adjusted using a factor of 0.56 based on a previous inter-method comparison in our laboratory. Trend analysis using an exponential decay regression showed that toxaphene in Great Lakes fish exhibited a significant decrease in all of the lakes with t1/2 (confidence interval) of 0.9 (0.8–1.1) years for Lake Erie walleye, 3.8 (3.5–4.1) years for Lake Huron lake trout, 5.6 (5.1–6.1) years for Lake Michigan lake trout, 7.5 (6.7–8.4) years for Lake Ontario lake trout and 10.1 (8.2–13.2) years for Lake Superior lake trout. Parlars 26, 50 and 62 were the dominant toxaphene congeners accounting for 0.53% to 41.7% of the total toxaphene concentration. Concentrations of these congeners generally also decreased over time.  相似文献   

8.
The chemical composition of lake water and inflowing river water was investigated in Nam Co (lake), Tibetan Plateau, in September 2005. Lake water samples (n = 76) were collected at different depths along a south–north transect of the eastern part of the lake while water samples were collected from 69 rivers flowing into the lake; a sediment core was collected at 64 m midway along the water survey transect to investigate salt precipitation. Na+ and Ca2+ were the dominant cations, accounting for 76.2% and 60.6% of the lake and river water cations, respectively while HCO3 was the dominant anion accounting for 70.8% and 93.4% of lake and river anions, respectively. CaCO3 precipitation from the water column decreased Ca2+ in the lake water, with the relative proportion of other ions increasing significantly. Evaporation–crystallization processes largely control Nam Co lake-water chemistry, while rock weathering is the dominant processes influencing the chemistry of river water; carbonate and silicate weathering are the major sources of ions in these rivers.  相似文献   

9.
The changes of environmental factors such as snow cover, vegetation and hydrologic regime of lakes can reflect ecosystem responses to changing climate. A series of satellite imagery-based environmental data archives including variations in snow cover, vegetation phenology and lake level were mapped in the Nam Co Lake Basin for the period 2000–2009. Results of the synthesis indicate that throughout this period, the average annual snow cover was 19.87% of the total basin, and there is an obvious relation between the elevation and a clear decreasing southeast–northwest trend in snow-cover persistence. Snow mainly happens from October to May. The multi-year mean water storage of Nam Co Lake is 86.40 × 109 m3, with a lake level increase of approximately 2.06 m during the study period. Vegetation phenology showed obvious variation with advanced start of season (SOS) and slightly extended duration of season (DOS). The mean DOS for the Nam Co Lake Basin was 154 days from 2000 to 2009. Affected by air temperature, the SOS dates coincided with snowmelt. The seasonal-variability of climate factors was also studied. The satellite-derived continuous and multiple datasets offer the advantage of monitoring the temporal and spatial trends of each of these metrics and mapping extensive, remote in mountainous areas with no in-situ data such as represented by the Tibetan Plateau.  相似文献   

10.
Urban lakes in many places around the world are rapidly becoming vulnerable because of such factors as urbanization, climate change, anthropogenic pollutant inputs, etc. The influence of such forcing factors on lakes hydrology must be correctly recognized and addressed in order to protect them over the long term. Facing similar challenges, Sukhna Lake, an urban lake in northern India, has apparently dried up frequently in the recent past. Numerous hypotheses were subsequently proposed to isolate the possible factors affecting the lake and its water budget, including the potential impacts of land use changes, climate change, anthropogenic activities and other natural processes. Using meteorological data, lake‐catchment information and a hydrologic model, these hypotheses were comprehensively analysed. Relevant data on rainfall, wind, temperature, lake inflows, groundwater, lake physical characteristics, catchment land uses, soil texture, etc., were gathered for the analysis. A temporal trend analysis of factors relevant to these hypotheses was undertaken to identify critical drivers of hydrological changes. A sensitivity analysis also was performed, using the lake water budget, to determine and prioritize the predominant factors affecting the lake, leading to the creation of an annual lake water budget for the period from 1971 to 2013, highlighting the lake inflows and outflows. The lake annual inflow (catchment run‐off) was computed by adopting a rainfall–run‐off model based on the SCS‐curve number. Lacking any anthropogenic water withdrawals, the outflow was quantified by estimating the evaporation loss (using the FAO‐based Penman–Monteith Equation). The results of the present study  indicate that the process of siltation and the construction of check dams in the catchment, rather than urbanization and climate change, were the dominating reasons contributing to changes in the lake hydrology, and affecting the lake most in recent years.  相似文献   

11.
Hemimysis anomala (Crustacea, Mysidae) is a recent invader to North America that until now was reported only from the Laurentian Great Lakes and their immediate embayments, along with the St. Lawrence River. In August 2009, we identified Hemimysis in diets of white perch and yellow perch in Oneida Lake, NY. Night time vertical plankton net tows detected Hemimysis at four sites across the lake. Hemimysis in fish diets (5.5–8.6 mm) were larger than in net tows (2.2–7.0 mm) and reproduction is occurring as some females had brood sacs. This is the first documented introduction of Hemimysis to an inland lake in North America, outside the Great Lakes. Oneida Lake is located 53 river km upstream from Lake Ontario, the nearest known source of Hemimysis. No genetic differences were found between Hemimysis in Oneida Lake and Lake Ontario, indicating this is likely the source of introduction. Several large rapids, locks, and dams separate the two lakes, and as a result the most likely vector of introduction to Oneida Lake is pleasure boat or light commercial traffic via the canal system or overland transport. The presence of Hemimysis in Oneida Lake 3 years after it was first found in Lake Ontario suggests this species may spread rapidly throughout the basin. Despite an intensive monitoring program on Oneida Lake directed at fish, zooplankton, and limnology, Hemimysis was only detected in fish diets and night time zooplankton tows, indicating it may go undetected in lakes for some time using traditional daytime net tows.  相似文献   

12.
The overall goal of this study was to quantify the major and minor sources and losses of total phosphorus (TP) to the Lake of the Woods (LOW), summarized as a nutrient budget. This research was initiated in response to degradation in lake water quality, including elevated TP concentrations and increased cyanobacterial blooms, which has resulted in LOW's classification as an “Impaired Waterbody” in Minnesota. The whole-lake LOW TP budget shows that tributary inflow is largely dominated by a single source, the Rainy River, draining 79% of the LOW catchment by area. Currently, there is only a small TP contribution from shoreline residential developments (6 t; ~ 1%) at a whole-lake scale, relative to the large TP loads from atmospheric deposition (95 ± 55 t; 13%) and the Rainy River (568 ± 186 t; 75%). Overall, the annual TP load to LOW was ~ 754 t with ~ 54% TP retained within the lake. The nutrient budget for the Rainy River catchment revealed that contributions from point sources along the river constitute the largest anthropogenic TP source to the Rainy River and eventually to LOW. Historical load calculations along the Rainy River show that this load has been significantly reduced since the 1970s, and presently just over 100 t of P enters LOW from anthropogenic point sources. These TP budgets provide insights into the major sources of TP influencing the overall LOW water quality and with future refinement may provide a greater understanding of linkages between TP loading and spatial and temporal water quality changes in the LOW.  相似文献   

13.
Studies suggest that oligotrophic lakes are net heterotrophic and act as net sources of CO2, whereas eutrophic lakes are net autotrophic and act as net CO2 sinks. Data on plankton community metabolism in Lake Taihu contradict this hypothesis. Here, the ratios of depth integrated gross primary production (GPP) to plankton community respiration (PCR) were less than one on 75% of the study sampling dates, indicating that this system was net heterotrophic. Partial pressure estimated for CO2 also indicated that the lake was a net source of CO2. Net heterotrophic conditions here may be related to limitation of phytoplankton photosynthesis by the poor underwater light climate (due to elevated suspended solids (SS) and nutrients originating in the catchment) and the preferential enhancement of respiration by high water temperatures. GPP and PCR were significantly correlated (PCR = 1.22GPP + 0.46, r2 = 0.80) indicating a partial dependence of heterotrophs on algal derived carbon. The slope of the regression line relating PCR to GPP was more similar to slopes found in rivers than in lakes, likely due to the large nutrient and SS load to the lake.  相似文献   

14.
Lake monitoring studies are essential for understanding the modern biogeochemical and sedimentological cycles to enable and support the interpretation of paleolimnological records. However, such studies remain scarce for high-altitude lakes in general and specifically for lakes on the Tibetan Plateau. We investigated the hydro-chemical and physical properties of lake Nam Co and its twenty-one major inflowing rivers from 2011 to 2013. The modern sediment flux and sediment properties were determined for samples collected by sediment traps deployed for the same study period at different water depths at three sites in Nam Co. Carbonate weathering in the catchment, especially pronounced during the monsoon season, was identified as the predominant origin of dissolved riverine hydrochemical components. The sediment budget shows remarkable temporal variation, with trends of intensified sediment fluxes during the non-monsoon season and small variations within the monsoon season. Spatially, considerably higher sedimentation fluxes were detected in nearshore sites (T1 and T3) and attributed to wind-induced resuspension. Vertically, resuspension is also an important factor that influences the sedimentation process, which leads to an exponential increase of the budget from the surface to the bottom layer. Autochthonous carbonate deposition rates presented a similar seasonal pattern, with the total sedimentation rates under the influence of the water balance. Low values occurred during the monsoon season due to dilution while deposition rapidly increased during the early post-monsoon season when the lake level decreased. Intensive carbonate deposition also occurred during the non-monsoon season, which dominated the lake hydrochemistry dynamics.  相似文献   

15.
An aerial distance sampling survey of double-crested cormorants (Phalacrocorax auritus) was conducted in the northern region of Lake Huron (North Channel; four largest lakes of Manitoulin Island; South Shore of Manitoulin Is. facing the main body of the lake) to assess the relative distribution, abundance and prey demand by cormorants on inland lake vs. coastal habitat. On a per area basis, the density (approx. 1-2 cormorants ? km− 2) and prey demand (approx. 1.2 kg ha− 1) of cormorants in the four inland lakes matched that of the North Channel. The South Shore had approximately half the density and prey demand as the other two areas. Cormorants on the inland lakes of Manitoulin Island represented 13% early in the season and a high of 33% of the total population for this region of Lake Huron later in the summer. Estimating regional distributions of cormorants within the Great Lakes basin is important because mapped nest colonies and nest counts are not representative of the actual distribution of foraging cormorants during and after the nesting season. There are two general conclusions to emerge from this survey. First, aquatic productivity from both Great Lakes coast and inland lakes contributes to trends in population and distribution of cormorants in the northern region of Lake Huron and perhaps elsewhere. Second, inland aquatic ecosystems are important throughout a season for foraging cormorants from the Great Lakes and may become more important as Great Lake productivity trends downward.  相似文献   

16.
The Straits of Mackinac are a unique feature that connects Lake Michigan and Lake Huron into a single hydraulically linked system. With currents of up to 1 m/s and oscillating volumetric transport up to 80,000 m3/s, they play an important role in water quality, contaminant transport, navigation, and ecological processes. We present the first three-dimensional hydrodynamic model of the combined Lake Michigan–Huron, including the Straits of Mackinac at high-resolution, that is able to simulate the three dimensional structure of the oscillating flows at the Straits. In comparison with individual lake models for Michigan and Huron (no connection at the Straits), we are able to isolate the effects of the bi-lake oscillation and have found that although the oscillation (Helmholtz mode) is the dominant forcing mechanism, the flow can be modulated when atmospheric systems are in-phase with water level fluctuations. Furthermore, the area of influence of the Straits is found to extend up to 70 km into each lake, underscoring the need for realistic predictions within the Straits. For the first time, this combined-lake hydrodynamic model provides the capability to investigate and accurately predict flow at the Straits of Mackinac and its effect on Lake Michigan and Huron. This model forms the basis for the next generation of real-time hydrodynamic models being developed for the Great Lakes Coastal Forecasting System, a suite of models designed by the National Oceanic and Atmospheric Administration Great Lakes Environmental Research Laboratory (NOAA/GLERL) that predict hydrodynamic conditions such as currents, temperatures, and water levels in three dimensions.  相似文献   

17.
We propose a radiometric chronology bracket for the last glacial advance/retreat, called the Marquette readvance, in the Upper Peninsula of Michigan (Upper Peninsula) using organic material from kettle lakes and previously published age determinations on wood buried by glaciofluvial sediments. The lakes are located both inside and outside the ice-contact margin of the Marquette readvance. Wood buried in glaciofluvial sediments from the Marquette readvance was previously dated at 10,025 ± 100 14C yr BP (Hughes and Merry 1978, Lowell et al. 1999, and Pregitzer et al. 2000). Ackerman Lake, a kettle lake located inside the ice-contact margin, yielded a basal radiocarbon date of 9,495 ± 70 14C yr BP representing the time of organic accumulation after ice retreat. These dates above and below the glacial deposit bracket the age of the Marquette readvance/retreat to 360–700 14C yr, or the midpoint of 530 14C yr. Ackerman Lake yielded multiple radiocarbon dates, including an average date of 8,811 ± 11 14C yr BP (9,736–9,913 cal yr BP) at a change in stratigraphy from red clay to gray silt. This transition along the northern Upper Peninsula is interpreted to represent ice sheet retreat into Lake Superior and the reworking of older glacial sediments by ∼8,500 14C yr BP. Organic material from the kettle lake sediments spanning multiple geomorphic locations (both inside and outside of the ice-contact margin) and previous radiocarbon dates from the entire Upper Peninsula yielded dates concentrating around 9,500 14C yr BP. We attribute this synchronous organic accumulation in the Upper Peninsula to be a result of climatic signature corresponding with the Preboreal Oscillation, so the duration of the Marquette glacial cover may have been less then implied by the Ackerman Lake basal age.  相似文献   

18.
Benthic communities in the Laurentian Great Lakes have been in a state of flux since the arrival of dreissenid mussels, with the most dramatic changes occurring in population densities of the amphipod Diporeia. In response, the US EPA initiated an annual benthic macroinvertebrate monitoring program on all five Great Lakes in 1997. Although historically the dominant benthic invertebrate in all the lakes, no Diporeia have been found in Lake Erie during the first 13 years of our study, confirming that Diporeia is now effectively absent from that lake. Populations have almost entirely disappeared from our shallow (< 90 m) sites in lakes Ontario, Huron, and Michigan. In Lake Ontario, three of our four deep (> 90 m) sites still supported Diporeia populations in 2009, with densities at those sites ranging between 96 and 198/m2. In Lake Michigan, populations were still found at six of our seven deep sites in 2009, with densities ranging from 57 to 1409/m2. Densities of Diporeia in 2009 at the four deep sites in Lake Huron were somewhat lower than those in Lake Michigan, ranging from 191 to 720/m2. Interannual changes in population size in Lake Huron and Lake Michigan have shown a degree of synchrony across most sites, with periods of rapid decline (1997-2000, 2003-2004) alternating with periods of little change or even increase (2001-2002, 2005-2009). There has been no evidence of directional trends at any sites in Lake Superior, although substantial interannual variability was seen.  相似文献   

19.
The wind-driven nature of large lakes suggests that the accuracy of meteorological inputs is essential for hydrodynamic modelling. Moreover, coupling between the meteorological inputs and density stratification may also influence the simulated lake behavior. To investigate wind-driven large lake processes, a high-resolution coupled Delft3D-SWAN model was applied to Lake Ontario to simulate storm surges, surface waves, and circulation during two recent storm events. In both events, the sustained wind speeds approached 20 m s?1; however, variations in wind direction and duration altered the lake's surface wave and storm surge responses. The influence of different atmospheric inputs was investigated by comparing results from two spatially varied atmospheric models: the Rapid Refresh (RAP) and the High-Resolution Deterministic Prediction System (HRDPS). Hydrodynamic simulations using HRDPS were marginally better, with maximum root mean squared errors (RMSE) between modelled and observed water levels of 0.07 m, compared to 0.08 m with RAP. Predictions of the magnitude and timing of the maximum wave heights varied based on wind fields, with differences between predicted peak wave heights of up to 0.4 m. Both events occurred during a stratified period, allowing for a comparative evaluation of the influence of baroclinic and barotropic processes on the simulated surface wave and storm surge results. Simulations including the vertical density gradient gave a better representation of current velocities with depth and resulted in an improved prediction of peak storm surge magnitudes and surface water level behavior following the storms, reducing the RMSE by up to 12%.  相似文献   

20.
Along 25 km of the Lake Ontario shoreline near Toronto, Ontario, small coastal embayments (0.4–32 ha) have been constructed or modified by lake-infilling to restore warmwater fish habitat. The variation in thermal habitat quality for warmwater fishes among these embayments is very high; temperatures range from those found within a small pond to those of much cooler Lake Ontario. Since meteorological conditions and surface heat fluxes are almost identical, the temperature variation among embayments must be caused by differences in bathymetry or exchange with Lake Ontario. However, a previous study on these embayments found paradoxically that temperatures were not strongly associated with channel size or embayment bathymetry. This paper resolves the paradox by showing that flushing times for almost all of the constructed embayments were less than 1 day, and often less than 12 h. With so little time to warm within the embayments, water temperatures of almost all embayments remained very close to the temperatures of the adjacent lake waters. The coldest embayments connected directly to open Lake Ontario and warmer embayments connected to Lake Ontario through other embayments or protected harbors, where the inflowing water from Lake Ontario had already substantially warmed. To allow embayments along the exposed shoreline of Toronto to reach acceptable temperatures for warmwater fish, we use heat budgets to calculate that average summer flushing times must be increased from their current length of 1.5 to 5.5 h to approximately 30 h. Such changes could be achieved through large reductions in the channel cross section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号