首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have studied high strain rate deformation of aluminum alloy 01570S with bimodal structure obtained by equal channel angular pressing. It has been demonstrated that, at certain parameters of structure and temperature-strain rate modes of dynamic loading, the alloy can exhibit a high coefficient of strain rate sensitivity m ?? 0.4 characteristic for structural superplasticity upon quasi-static loading. An explanation of this effect in terms of the theory of nonequilibrium grain boundaries is proposed.  相似文献   

2.
2D-SiC/SiC复合材料拉伸加卸载行为   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究国产2D-SiC/SiC复合材料的拉伸损伤行为以及低周循环载荷作用下的力学性能,通过试验和建立加卸载细观力学模型,对其拉伸加卸载行为进行了探讨。建立了单向连续纤维增强陶瓷基复合材料加卸载细观力学模型,得到了初始加载、卸载和重新加载时的应力-应变关系;利用断裂统计方法得到了基体裂纹数随应力变化的关系和复合材料失效判断条件。经过应力转化,将该模型应用于国产二维编织SiC/SiC复合材料。对单向加载试件,采用正交试验方法和最小二乘法得到基体Weibull模量和界面剪切阻力,通过控制材料失效强度与试验结果一致,得到纤维Weibull模量。由上述参数确定的2D-SiC/SiC复合材料拉伸循环加卸载应力-应变曲线与实测曲线吻合很好。通过Matlab编程得到2D-SiC/SiC复合材料单向加载时基体开裂过程图。结果表明,2D-SiC/SiC复合材料失效时,基体裂纹分布相对比较均匀;基体裂纹数随应力单调增加,未出现持平段,表明材料失效时,基体裂纹还没有达到饱和。  相似文献   

3.
4.
An experimental investigation is conducted to evaluate the thermo-mechanical constitutive behavior of a functionally graded material (FGM) under dynamic loading. Cylindrical specimens are machined from a titanium/titanium mono-boride (Ti/TiB)-layered FGM plate using electrical discharge machining (EDM). A Split Hopkinson Pressure Bar (SHPB) apparatus with infrared (IR) spot heaters is used to investigate the effect of temperature on mechanical response of the FGM material. A series of experiments are conducted at different temperatures and the stress–strain relation for different temperatures is obtained. The material showed high thermal softening at elevated temperatures resulting in a large reduction in compressive strength and an increase in failure strain.  相似文献   

5.
采用微机控制电子万能实验机和分离式霍普金森压杆(SHPB)对石墨烯增强的铝基复合材料和碳化硅增强的铝基复合材料进行准静态压缩实验和动态冲击实验,研究石墨烯增强铝基复合材料在不同应变率下的冲击力学性能,采用SEM扫描电镜研究石墨烯增强的铝基复合材料和碳化硅增强的铝基复合材料的形貌特征。结果表明:在各个应变率载荷下,添加石墨烯和添加碳化硅都增强了铝合金的屈服强度,其中,添加石墨烯对铝合金的屈服强度提升更加明显,但不影响材料的应变硬化率;相较于在材料中添加碳化硅,添加石墨烯弱化了材料的应变率效应,在高应变率条件下,添加石墨烯降低了材料的强度极限;选取部分实验数据,拟合确定了添加石墨烯和添加碳化硅两种复合材料的J-C和Z-A本构方程的参数,并比较了两种本构模型的预测能力,对于本工作所研究的复合材料,J-C模型的预测能力更好。  相似文献   

6.
In the present study, the texture evolution, microstructure and mechanical behavior of WE43 magnesium sheet at high strain rates are investigated. Samples cut along the rolling direction (RD), 45° from the RD, transverse direction (TD) and perpendicular to the RD-TD plane were tested at strain rates of 800, 1200 and 1400 s−1 using Split Hopkinson Pressure Bar. It is observed that after shock loading, the initial weak texture converts to a weak (00.2) basal texture in all samples. Besides, it is found that the strength and ductility increase and twinning fraction decreases with increase in strain rate. Moreover, another effect of increase in strain rate is found to be the higher activation of pyramidal 〈c + a〉 slip systems. In addition, degree of stress and strain anisotropy is low particularly at higher strain rates, which is mainly related to the weak initial texture of the samples. A viscoplastic self-consistent model with a tangent approach is used to analyze the deformation mechanism during shock loading.  相似文献   

7.
2024-T3铝合金动力学实验及其平板鸟撞动态响应分析   总被引:1,自引:0,他引:1  
通过电子万能试验机和分离式霍普金森拉杆(SHTB)拉伸试验分别获得2024-T3铝合金材料准静态和高应变率两种应变率下的应力-应变曲线。铝合金材料的本构关系由能够反映材料硬化效应和应变率强化效应的Johnson-Cook材料模型描述,方程中的4个参数通过不同应变率下的应力-应变曲线拟合得到。基于瞬态动力学软件PAM-CRASH,结合材料动态力学性能试验所获得的2024-T3铝合金Johnson-Cook模型方程,耦合光滑粒子流体动力学(SPH)方法和有限元(FE)方法建立2024-T3铝合金平板的鸟撞数值模型,数值计算所得动态响应与鸟撞试验结果吻合较好,表明建立的鸟撞数值计算模型是合理、可靠的,整个分析流程从材料动态力学性能试验、鸟撞数值计算到最终的鸟撞试验验证为飞机结构的抗鸟撞设计与分析提供了有力的参考。  相似文献   

8.
9.
Characterization of intermetallics in aluminum alloy 3004   总被引:2,自引:0,他引:2  
The evolution of intermetallics in aluminum alloy 3004 from the casting to the thin-sheet stages is examined. Two casting types have been utilized: 650-mm-thick D.C. ingot and 12-mm-thick stationary-mold-cast strip. Size, shape, density, and area fraction of intermetallics are characterized in their matrix environment using the standard optical, scanning electron microscopy and scanning transmission electron microscopy metallographic techniques. The results are discussed in terms of a) the effect of processing parameters on the intermetallic structure and b) the impact of primary and secondary intermetallics on the microstructure development (grain size and texture) and the performance (anisotropy, bendability, metal finish, and metal transfer during forming). The strip-sourced alloy is characterized by a smaller primary intermetallic size but it affords a greater flexibility in developing a variety of primary and secondary intermetallic area fractions and size distributions. Hence it can be tailored more readily to a specific set of performance criteria.  相似文献   

10.
The biaxiality effect, especially the effect of non-singular stress cycling, on the fatigue behavior was studied, employing cruciform specimens of aluminum alloys 1100-H14 and 7075-T651. The specimens, containing a transverse or a 45o inclined center notch, were subjected to in-phase (IP) or 100% out-of-phase (hereinafter referred to as “out-of-phase or OP”) loading of stress ratio 0.1 in air. The biaxiality ratio λ ranged from 0 to 1.5, and 3 levels of stress were applied. It was observed that: (1) at a given λ, a lower longitudinal stress induced a longer fatigue life under IP and OP loading, and the fatigue life was longer under IP loading, (2) the fatigue crack path profile was influenced by λ, phase angle (0o or 180o), and initial center notch (transverse or 45o inclined); (3) the fatigue crack path profiles, predicted analytically and determined experimentally, had similar features for the specimens with a transverse center notch under IP loading; and (4) the fatigue crack growth rate was lower and the fatigue life longer for a greater λ under IP loading, whereas it changed little with change in λ under OP loading. These results demonstrate that non-singular stress cycling affects the biaxial fatigue behavior of aluminum alloys 1100-H14 and 7065-T651under IP and OP loading.  相似文献   

11.
利用电子万能试验机以及Split Hopkinson Compressive Bar(SHPB)测试了2DC/C复合材料在准静态、动态载荷下的压缩性能,结合光学显微镜分析了其在不同应变率下的破坏形貌、讨论了应变率对压缩破坏形貌的影响。结果表明:与准静态(10-4/s)相比,动态载荷下(5×102/s)复合材料的压缩强度提高了55%,压缩刚度提高了66%,具有较强的应变率效应;在准静态载荷下,C/C复合材料沿40°角剪切破坏,断口上炭纤维破坏具有溃散及剪切破坏特征,而在动态载荷下,C/C复合材料破坏成大小不一的碎片,其炭纤维破坏具有劈裂特征。C/C复合材料破坏模式的不同可归结为基体及界面强度的应变率效应。  相似文献   

12.
Wear tests were conducted on an aluminum Al-1050 alloy after processing by equal-channel angular pressing (ECAP). The results show that the coefficient of friction remains unchanged after processing by ECAP, but there is a decrease in the wear resistance and a mass loss that increases with increasing numbers of ECAP passes. The results are consistent with a wear mechanism map and confirm the occurrence of a severe wear mechanism. The decreasing wear resistance after ECAP is attributed to the significant grain refinement introduced by ECAP and the lack of a strain hardening capability.  相似文献   

13.
During automotive related accidents, PVB plays an important role in both pedestrian and passenger protection as an interlayer of automotive windshield. In this paper, dynamic constitutive behavior of PVB material is thoroughly studied. Firstly, a set of dynamic compression impact experiments on PVB specimens using SHPB (Split Hopkinson Pressure Bar) method are conducted at strain rates from 700/s to 4500/s. Details of the constitutive response is analyzed based on the validation of experiment data. Stress-strain curve of PVB is then divided into two parts, i.e., “Compaction Stage” and “Hardening Stage”. Dislocations and entanglements among molecules are major reasons for the two-stage phenomena. Constitutive behaviors are different in low and high speed impacts, leading to three times more energy absorption ability of PVB in high speed impact scenario. Further, data fitting models based on both Mooney–Rivlin and Ogden Model are studied and then compared. Mooney–Rivlin Model is found to be more appropriate to describe PVB material. Moreover, PVB is proved to be a rate-dependent material with the failure strength intensify factor β ≈ 4. PVB material shows little viscoelasticity after comparison of the both models with and without the viscoelasticity part. Results offer critical experimental data, constitutive models and analysis of PVB material to further study of automotive crashworthiness and pedestrian/passenger protection.  相似文献   

14.
15.
Annealing behavior of a modified 5083 aluminum alloy   总被引:1,自引:0,他引:1  
The annealing behavior of a modified 5083 aluminum alloy was studied in the temperature range of 125–375 °C with different holding times. The results shown that the annealing temperature was more sensitive to the mechanical and corrosion resistance properties compared with the annealing holding time. The mechanical and corrosion resistance properties depend on annealing treatment due to different dislocation configuration in the matrix and the second phase interface, annealing temperature and time have been optimized for both of those properties improvement.  相似文献   

16.
为研究7050T451铝合金蠕变时效本构模型,在160℃、不同应力条件下进行单轴拉伸蠕变试验,分析了蠕变应变、屈服强度和微观组织随时间的变化规律.基于高强铝合金析出强化理论,建立了能描述蠕变时效成形宏观及微观变化的本构方程,并运用遗传算法对材料常数进行拟合优化.研究表明,该模型在不同应力水平下与试验结果吻合良好,能够用来模拟分析蠕变时效成形过程.  相似文献   

17.
为了优化铝合金预拉伸板拉伸过程中的工艺参数,对7075铝合金板淬火过程进行直接热力耦合数值模拟,在获得淬火残余应力分布规律的基础上开展考虑夹钳制约作用时铝合金拉伸过程数值模拟,研究了不同拉伸率时其残余应力消除效果,得出在夹钳制约作用下铝合金板材拉伸后变形3个区域--夹持区、过渡区和均匀区.采用盲孔法对夹持作用下铝合金板...  相似文献   

18.
采用大直径分离式霍普金森压杆(SHPB)试验装置研究了多种EPS体积掺量的EPS混凝土在不同应变率下的力学行为。分析了平均应变率以及EPS体积掺量对EPS混凝土的冲击力学性能的影响。采用朱-王-唐(ZWT)模型,在试验研究的基础上,建立了EPS混凝土非线性粘弹性本构模型。结果表明:在高应变率条件下,EPS混凝土的动态抗压强度与极限应变随平均应变率的提高近似线性增长,呈现出显著的应变率相关性。随着EPS体积掺量的增加,混凝土的动态抗压强度和弹性模量降低,变形能力得到改善。本构模型提供的理论曲线与试验曲线比较接近,ZWT模型可以较为准确地描述EPS混凝土的高应变率力学行为。  相似文献   

19.
Experimental investigations have been made on the quasi-static mechanical behavior and failure modes of aluminum/bamboo sandwich plates. Thermosetting epoxy resin and thermoplastic Polybond resin were used to bond the aluminum sheets and the bamboo. Tensile, compressive and flexural properties were evaluated. The effects of bond conditions on the mechanical behavior and failure modes were examined. The thermoplastic Polybond resin resulted in a stronger interface bond than the thermosetting epoxy resin. The improvement of the interface bond led to significant increases in compressive and flexural properties. The tensile properties were found to be insensitive to the interface bond. The dominant failure mechanisms affected by the interface bond dictated the mechanical properties of the sandwich plates in individual loading conditions.  相似文献   

20.
This paper addresses the uncertainties associated with using carbon nanotubes (CNTs) as reinforcement for cement. These uncertainties emerge mainly from the CNTs’ wide range of mechanical properties and their interfacial behavior with cement. This study sheds light on the basis of choosing the optimal combinations of CNTs mechanical and interfacial parameters to improve the structural strength and ductility of CNT-reinforced cementitious composites. The finite element method (FEM) is employed to study the individual and interactive effects of five parameters, including interfacial shear (bond) strength, allowable slip, CNT Young’s modulus, residual bond stress and aspect ratio. Numerical results show that the parameters, at certain ranges of values, interact substantially and greatly alter the mechanical properties of the composite. It is also found that the governing parameter is the CNT Young’s modulus, which determines whether the composite is ductility critical or strength critical. Furthermore, the level of residual bond stress substantially influences the effect of other parameters, especially in the case of composite ductility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号