首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fracture behaviour of a polyetherimide (PEI) thermoplastic polymer was studied using compact tension (CT) specimens with a special emphasis on effects of specimen thickness and testing temperatures on the plane strain fracture toughness. The results show that the valid fracture toughness of the critical stress intensity factor, K IC, and strain energy release rate, G IC, is independent of the specimen thickness when it is larger than 5 mm at ambient temperature. On the other hand, the fracture toughness is relatively sensitive to testing temperatures. The K IC value remains almost constant, 3.5 MPa in a temperature range from 25 to 130°C, but the G IC value slightly increases due to the decrease in Young's modulus and yield stress with increasing temperature. The temperature dependence of the fracture toughness, G IC, was explained in terms of a plastic deformation zone around the crack tip and fracture surface morphology. It was identified that the larger plastic zone and extensive plastic deformation in the crack initiation region were associated with the enhanced G IC at elevated temperatures.  相似文献   

2.
The percent intergranular fracture (PIF) was measured along radii extending from fracture origins in hot-pressed alumina specimens, fractured at various loading rates and temperatures, and plotted versus estimates of stress intensity factors (K I) at the various crack lengths. Minima in PIF occur at values ofK I that are close to the critical stress intensity factors (K IC) for cleavage on various crystal lattice planes in sapphire. The subcritical crack-growth boundary (K I=K IC of the polycrystalline material) occurs near the primary minimum in PIF suggesting that this minimum can be used as a criterion for locating this boundary. In addition, it was noted that the polycrystallineK IC (4.2 MPa m1/2) is very close to theK IC for fracture on {¯1 ¯1 2 6} planes which is 4.3 MPa m1/2. These observations suggest that critical crack growth begins when increased fracture energy can no longer be absorbed by cleavage on these planes. There is a secondary minimum atK I>K IC that appears to be associated with theK IC necessary for fracture on combinations of planes selected by the fracture as alternatives to the high fracture-toughness basal plane.  相似文献   

3.
Abstract

The temperature dependence of the plane strain fracture toughness of a low carbon, fine grain, ferritic steel for structural applications is investigated. The ductile–brittle transition is found to occur in the interval between 160 and 184 K. The experimental results are interpreted by an analytical model which permits calculation of the plane strain fracture toughness K 1c in the brittle domain as a function of the tensile properties and the cleavage fracture stress, making use of a piecewise approximation for the distribution of tensile stress on the crack axis and applying a deterministic fracture criterion at the stress peak. A similar criterion, which consists of equating the severest strain on the crack axis to a critical strain for cavity nucleation, provides the upper shelf fracture toughness. A relatively simple figure for predicting the transition temperature of steels in this family as a function of material properties can be obtained in this way.  相似文献   

4.
Ceramic three-point bend specimens were pre-cracked in a displacement-controlled test in air at room temperature to form sharp cracks of different lengths. Critical stress intensity factors (K IC were then measured as a function of sharp crack length in a fast-fracture, load-controlled test. Crack resistance curves (K IC against crack length) were determined for three commercially pure aluminas of different grain size, a debased alumina containing a glassy phase, and a partially stabilized zirconia (PSZ) material. The crack resistance curves proved to be flat for the finer-grained and the debased alumina. A steeply rising crack resistance curve was, however, observed for a pure coarse-grained alumina material which is explained by friction effects of the cracked microstructure behind the measured crack front. The effect is influenced by the test procedure itself. Though crack branching takes place the crack resistance curve of PSZ is completely flat, which is attributed to fast fracture testing where only the most dangerous flaw is activated.  相似文献   

5.
The data presented below for a low cement refractory shows that the material has strong R-curve behaviour for certain specimen sizes. The superposition method proposed by Sakai and Bradt [1] was coupled with the effective crack model developed by Karihaloo and Nallathambi [2] and used to investigate this R-curve behaviour. The technique that was developed involves load cycling on one specimen to evaluate K IC values with crack extension, and was shown to give favourable results for this material.  相似文献   

6.
For massive brittle materials, the fracture toughness in mode I, KIC, can be determined using various reliable techniques. Besides, Vickers Indentation Fracture (VIF) technique has been developed to locally determine fracture toughness. However, since the indentation test generates a complex three-dimensional crack system around the indent, fracture toughness, KC, is calculated instead of KIC. Consequently some authors rightly reject the VIF technique to determine standard fracture toughness by arguing that the literature counts numerous VIF crack equations thus revealing discrepancies of this technique. Nevertheless in some cases (e.g. brittle ceramic coatings) inclusive material techniques are not applicable since presence of the substrate and/or multi-crack network can modify the crack propagation into the coating.In this work, we employed VIF technique to study multi-cracking behavior of titania, alumina and zirconia ceramic oxide coatings obtained by plasma spraying. To calculate VIF toughness, we propose (i) to select two crack equations for radial-median and Palmqvist cracking modes respectively, (ii) to adjust the crack equation of Miranzo and Moya for intermediate cracking mode, (iii) to develop a mathematical approach to determine the cracking mode, (iv) to take into account the multi-crack network by defining an equivalent four-crack system and (v) to propose a universal crack equation applicable independently of the cracking mode.  相似文献   

7.
Abstract— Near threshold, mixed mode (I and II), fatigue crack growth occurs mainly by two mechanisms, coplanar (or shear) mode and branch (or tensile) mode. For a constant ratio of ΔKIKII the shear mode growth shows a self-arrest character and it would only start again when ΔKI and ΔKII are increased. Both shear crack growth and the early stages of tensile crack growth, are of a crystallographic nature; the fatigue crack proceeds along slip planes or grain boundaries. The appearance of the fracture surfaces suggest that the mechanism of crack extension is by developing slip band microcracks which join up to form a macrocrack. This process is thought to be assisted by the nature of the plastic deformation within the reversed plastic zone where high back stresses are set up by dislocation pile-ups against grain boundaries. The interaction of the crack tip stress field with that of the dislocation pile-ups leads to the formation of slip band microcracks and subsequent crack extension. The change from shear mode to tensile mode growth probably occurs when the maximum tensile stress and the microcrack density in the maximum tensile plane direction attain critical values.  相似文献   

8.
The crack tip model with the cohesive zone ahead of a finite crack tip has been presented. The estimation of the length of the cohesive zone and the crack tip opening displacement is based on the comparison of the local stress concentration, according to Westergaard's theory, with the cohesive stress. To calculate the cohesive stress, von Mises yield condition at the boundary of the cohesive zone is employed for plane strain and plane stress. The model of the stress distribution with the maximum stress within the cohesive zone is discussed. Local criterion of brittle fracture and modelling of the fracture process zone by cohesive zone were used to describe fracture initiation at the hydride platelet in the process zone ahead of the crack tip. It was shown that the theoretical K IH-estimation applied to the case of mixed plane condition within the process zone is qualitatively consistent with experimental data for unirradiated Zr-2.5Nb alloy. In the framework of the proposed model, the theoretical value of K H IC for a single hydride platelet at the crack tip has been also estimated.  相似文献   

9.
The dependence of the fracture toughness, K IC, on the loading rate has been calculated. On the basis of linear elastic fracture mechanics (LEFM) a strong dependence of the fracture toughness on the loading rate is obtained if subcritical crack growth is taken into account. If the subcritical crack growth parameters n and B are sufficiently small, which correspond to a high velocity of crack extension, the fracture toughness should decrease at lower loading rates. This behaviour is similar to the well-known decrease of bending strength. The experimental results for alumina containing glassy phase as a model material, however, show a maximum in a certain regime of loading rates. A model is established, which combines LEFM and the viscoelasticity, and leads to a maximum of K IC at a certain loading rate dependent on the viscosity of the glassy phase.  相似文献   

10.
A previously developed theory of fracture toughness is extended so that the plane strain fracture toughness KIC may be calculated by a simple integration of uniaxial tensile data. KIC values calculated by this procedure are within 3 per cent of the values obtained by the previous theory for the materials considered.  相似文献   

11.
Many non‐linear fracture models have been proposed by design codes and investigators to determine fracture parameters of cement‐based materials. To characterise failure of concrete structures, the effective crack model (ECM) needs two fracture parameters: the effective crack length ae and the critical stress intensity factor . Nevertheless, ECM requires a closed‐loop testing system and the calculation of ae needs considerable computational effort. For this reason, ECM is simulated with an artificial neural network (ANN) in this study. The main benefit of using an ANN approach is that the network is built directly on experimental data by using the self‐organizing capabilities of the ANN. The presented fracture model was developed by utilising 464 noisy test data taken from the literature, which were obtained via different test methods in different laboratories. The results of an ANN‐based ECM look viable and very promising.  相似文献   

12.
Crack size and structure size transitions are illustrated which connect the two limit-cases of ultimate tensile strength failure (small cracks and small structures) and mixed-mode crack propagation (large cracks and large structures). The problem of mixed-mode crack propagation in concrete is then faced. By increasing the size-scale of the element the influences of heterogeneity and cohesive crack tip forces disappear and crack branching is governed only by the linear elastic stress-singularity in the crack tip region. It is proved in this way that the fracture toughness of the material is measured by a unique parameter (GIF, GIC or KIC) even for the mixed-mode condition. The ratio of the sliding or Mode II fracture toughness (GIIF, GIIC or KIIC) to the opening or Mode I fracture toughness depends only on the crack branching criterion adopted and not on the material features. Eventually, very controversial experimental results recently obtained on the shear fracture of concrete are explained on the basis of the above-mentioned size-scale transition.  相似文献   

13.
Fatigue crack growth (FCG) is usually studied assuming that ΔK is the driving parameter. An effective ΔK is considered in the presence of crack closure. However, after crack opening, there is an elastic regime that does not contribute to FCG. The objective here is to quantify this elastic range of ΔK, ΔKel, for different loading conditions and material properties. The yield stress was found to be the most important material parameter, followed by the hardening exponent. A linear decrease of ΔKel with ΔK was found for the 7050‐T6, 6082‐T6, and 6016‐T4 aluminium alloys, while the 304L stainless steel presented a slight increase. On the other hand, the increase of Kmax was found to increase the elastic fatigue range. Relatively high values of elastic range were obtained for the plane strain state, compared with the plane stress state.  相似文献   

14.
Finite element calculation based on finite strain theory is carried out to simulate the crack growth on bimaterial interfaces under the assumption of small scale yielding and plane strain condition. The modified Gurson's constitutive equation and the element vanish technique introduced by Tvergaard et al. are used to model the final formation of an open crack. The crack growths in homogeneous material and in bimaterials are compared. It is found from the calculation that the critical macroscopic fracture toughness for crack growth J IC is much lower in bimaterials than in homogeneous material. For bimaterial cases, the J IC of a crack between two elastic-plastic materials which have identical elastic properties with different yield strength is lower than that of a crack between an elastic-plastic material and a rigid substrate. It seems that the difference in yield strength between the dissimilar materials has more significant influence on the void nucleation and crack growth than the difference in hardening exponent.  相似文献   

15.
To evaluate fracture by a single parameter like J integral in molecular dynamics (MD) calculation, we propose a parameter derived by extending integral to atomic model, being referred to as H-sum. To examine the path independence of H, we first apply H to a simple tensile problem of two dimensional model of -iron by using molecular dynamics method. As a result, we confirm that H has the path independence within an accuracy of 8.5%. In addition, the validity of the proposed parameter is clarified by analyzing a problem of microscopic crack initiation and propagation process. H increases with increasing tensile stress and reaches a critical value when a crack initiates, and subsequently decreases with the crack growth. Calculating K IC from this critical H, we compare K IC with deCelis' and the Mullins' results calculated directly from MD calculation, and get good agreement.  相似文献   

16.
It has been theoretically postulated that the crack opening displacement (COD) technique is applicable in characterising fracture of material in the generally yielded as well as linear elastic regimes. Hence, it is possible to determine the plane strain fracture toughness, KIC, of a material using the COD method if the onset of crack propagation and the location of the centre of rotation can be evaluated. In the present investigation, COD values at crack initiation, δi, for Rochling Moulrex A steel were obtained with 3-point bend specimens at six different tempering temperatures using the multiple specimens load-unload extrapolation technique. It is found that by using the BS 5762:1979 analysis, KIC values were grossly over-estimated. The use of a constant rotational factor is observed to be inadequate. Under small scale yielding conditions, the centre of rotation is postulated from the present results to be located at approximately the end of the stretched zone. This supposition was applied to estimate the KIC values of standard compact tension specimens made from Rochling Moulrex A, Assab 25X and Comsteel En25 steels. Where the material was linear elastic, the estimation was good with discrepancy of less than 7%. Overestimation was seen at high tempering temperatures due to the increasing amount of plasticity in the material that shifted the location of the centre of rotation from the end of the stretched zone to a position closer to that suggested in the British Standard.  相似文献   

17.
Fracture toughness of silicon crystals has been investigated using indentation methods, and their surface energies have been calculated by molecular dynamics (MD). In order to determine the most preferential fracture plane at room temperature among the crystallographic planes containing the 〈001〉, 〈110〉 and 〈111〉 directions, a conical indenter was forced into (001), (110) and (111) silicon wafers at room temperature. Dominant {110}, {111} and {110} cracks were introduced from the indents on (001), (011) and (111) wafers, respectively. Fracture occurs most easily along {110}, {111} and {110} planes among the crystallographic planes containing the 〈001〉, 〈011〉 and 〈111〉 directions, respectively. A series of surface energies of those planes were calculated by MD to confirm the orientation dependence of fracture toughness. The surface energy of the {110} plane is the minimum of 1.50 Jm−2 among planes containing the 〈001〉 and 〈111〉 directions, respectively, and that of the {111} plane is the minimum of 1.19 Jm−2 among the planes containing the 〈011〉 direction. Fracture toughness of those planes was also derived from the calculated surface energies. It was shown that the K IC value of the {110} crack plane was the minimum among those for the planes containing the 〈001〉 and 〈111〉 directions, respectively, and that K IC value of the {111} crack plane was the minimum among those for the planes containing the 〈011〉 direction. These results are in good agreement with that obtained conical indentation.  相似文献   

18.
The nature of the crack and the structure behaviour can range from ductile to brittle, depending on material properties, structure geometry, loading condition and external constraints. The influence of variation in fracture toughness, tensile strength and geometrical size scale is investigated on the basis of the π-theorem of dimensional analysis. Strength and toughness present in fact different physical dimensions and any consistent fracture criterion must describe energy dissipation per unit of volume and per unit of crack area respectively. A cohesive crack model is proposed aiming at describing the size effects of fracture mechanics, i.e. the transition from ductile to brittle structure behaviour by increasing the size scale and keeping the geometrical shape unchanged. For extremely brittle cases (e.g. initially uncracked specimens, large and/or slender structures, low fracture toughness, high tensile strength, etc.) a snap-back instability in the equilibrium path occurs and the load–deflection softening branch assumes a positive slope. Both load and deflection must decrease to obtain a slow and controlled crack propagation (whereas in normal softening only the load must decrease). If the loading process is deflection-controlled, the loading capacity presents a discontinuity with a negative jump. It is proved that such a catastrophic event tends to reproduce the classical LEFM-instability (KI = KIC) for small fracture toughnesses and/or for large structure sizes. In these cases, neither the plastic zone develops nor slow crack growth occurs before unstable crack propagation.  相似文献   

19.
Empirical estimation is a common method for getting mode I fracture toughness KIC of rock. By collecting data from tests in this study and literature, 204 sets of KIC and tensile strength σt test data are obtained for new empirical KICσt relations regression. The empirical relations make the estimation of KIC values from σt conveniently, but test procedures and lithology will influence its reasonability and reliability. Results indicate that the empirical KICσt relations obtained from the four different suggested KIC test methods are all in good but obviously different linear relationship. The analyses show that cracked chevron notch Brazilian disc specimen (CCNBD) test‐based empirical relation is more accurate for estimating KIC than the other three test‐based empirical relations. As to different lithology, isotropic rocks such as sandstone and carbonatite may be more appropriate for the application of empirical estimation method. However, for coarse grained or anisotropic rocks such as granite and marble, estimation method should be applied carefully because of possibly weak KICσt relations.  相似文献   

20.
The growth of indentation-produced controlled flaws in a polycrystalline lithium-aluminium-silicate glass ceramic has been studied, over a wide range of temperatures and strain rates. Significant scatter in the fracture stress at elevated temperatures suggests that the extent of slow crack growth is highly sensitive to microstructural details. The initial flaw shape is important inK IC determination. Up to 1000° C the fracture toughness,K IC, is essentially strain-rate insensitive. The value ofK IC decreases with temperature beyond 850° C. Intergranular cavity formation is suggested as the reason. Crack blunting by diffusive crack healing probably occurs at high temperatures. Also, intergranular slow crack growth occurs essentially under Mode I loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号