首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The radial electric field has been investigated in the edge plasma of IR-T1 tokamak by movable sets of single Langmuir probes. Simultaneous measurements of the radial electric field and poloidal magnetic field oscillations shown that magnetohydrodynamics activity is damped when the radial electric field becomes more negative in the plasma edge. The results shown that MHD frequency decreases while the radial electric field increasing negatively.  相似文献   

2.
In this paper we presented experimental investigation of effects of local limiter biasing (Vbiasing = +200 v, Vbiasing = +320 v) on the plasma parameters as plasma current, loop voltage, poloidal beta, plasma pressure, plasma energy, plasma resistance, plasma temperature, plasma displacement, Shafranov parameter and plasma internal inductance in IR-T1 tokamak. For these purposes, array of magnetic probes and also a diamagnetic loop have been used. The results show that applied biased voltage Vbiasing = +200 v causes to decrease of about 40 % in plasma internal inductance. The plasma resistance and the plasma displacement have been decreased by Vbiasing = +200 v. The main result of the application of Vbiasing = +200 v is flatting the plasma parameters profiles. In other words, the addition of biasing voltage Vbiasing = +200 v to plasma could be effective for improving the quality of tokamak plasma discharge by creating the steady state plasma. The plasma current, plasma pressure, plasma energy, plasma temperature and shift parameter have increased after the application of limiter biasing with Vbiasing = +320 v but they decrease rapidly.  相似文献   

3.
Precise measurements of poloidal beta and internal inductance are essential for tokamak plasma experiments. In this paper we present an experimental investigation of effects of Resonant Helical Field (RHF) on the poloidal beta in IR-T1 tokamak. For this purpose, a diamagnetic loop with its compensation coil were constructed and installed on outer surface of the IR-T1 tokamak, and then poloidal beta measured. In order to investigate the effects of RHF on the poloidal beta, we measured it with and without introducing of different modes of the RHF (L = 2, L = 3, L = 2 & 3). Experimental results discussed.  相似文献   

4.
Plasma energy confinement time is one of the main parameters of tokamak plasma and Lawson criterion. In this paper we present an experimental method especially based on diamagnetic loop (toroidal flux loop) for measurement of this parameter in presence of resonance helical field (RHF) in IR-T1 tokamak. For this purpose a diamagnetic loop with its compensation coil constructed and installed on outer surface of the IR-T1. Also in this work we measured the plasma current and plasma voltage from the Rogowski coil and poloidal flux loop measurements. Measurement results of plasma energy confinement time with and without RHF (L = 2, L = 3, L = 2 & 3) show that the addition of a relatively small amount of RHF could be effective for improving the quality of tokamak plasma discharge by flatting the plasma current and increasing the energy confinement time.  相似文献   

5.
In this paper we present an investigation of the effects of Toroidal Field ripple (TF ripple) on the Shafranov parameter in IR-T1 Tokamak. For this purpose, a diamagnetic loop with its compensation coil were designed and installed on outer surface of the IR-T1 Tokamak. Amplitude of the TF ripple is obtained 0.01, and also the effect of TF ripple on the Shafranov parameter discussed. In presence of the TF ripple and in low field side of the IR-T1 Tokamak chamber (θ = 0), the local value of Shafranov parameter increased, whereas in the high field side (θ = 180) the Shafranov parameter decreased.  相似文献   

6.
We analyzed dynamic equilibrium properties of a large aspect ratio and low Beta tokamaks, in particular deriving a modified relation for the Shafranov shift in the presence of poloidal flow and external vertical field, and demonstrate it experimentally on the IR-T1 tokamak. Poloidal flow can produce modifications in the equilibrium properties. By increasing Alfvenic Mach number from zero, flow produce outward force, and plasma shifted in outward direction. If the poloidal Alfvenic Mach number equal to one, singularity will observe in the solution of generalized Grad–Shafranov equation. Also inversion of Shafranov shift in the transition of flow speed between sub-Alfvenic to super-Alfvenic speeds can be observed due to inward force produced by flow.  相似文献   

7.
The high-energy current of runaway electrons during a major disruption in tokamak reactors can cause serious damage to the first wall of the reactor and reduce its lifetime. Therefore, it is important to find methods for decreasing the generation of runaway electrons and their energy. The safety factor plays an important role in determining the stability criteria for a wide range of MHD modes. Since runaway electrons suffer only rarely from collisions and are hardly sensitive to electrostatic turbulence, their transport is governed by the magnetic lines structure. On the other hand, since the safety factor is related to the magnetic lines structure, changes in safety factor may have important effects on the diffusion of runaway electrons. In this paper, the generation of runaway electrons and their transport is investigated theoretically. Moreover, by changing the discharge voltage of ohmic and toroidal capacitors, different values of the edge safety factor is generated. In fact, in this experiment, the researchers try to increase the diffusion of runaway electrons by using safety factor changes in the IR-T1 tokamak.  相似文献   

8.
A new method for describing the nature of radial electric field and its relation with toroidal rotation in edge plasma of small size divertor tokamak is proposed in this work. The expression of radial electric field in the edge plasma of small size divertor tokamak can be divided into two parts. The first part E r (0) is related to electrostatic potential of plasma in edge plasma of this tokamak. The second part E r (1) is related to contribution of toroidal rotation of radial current in edge plasma of this tokamak. The results of this work provide the following: (1) A new one-dimensional ordinary differential equation for toroidal velocity is obtained. The one-dimensional ordinary differential equation suggest new tool to explaining tokamak experiments involving measurements of plasma rotation and radial electric field. (2) Also the results of this work shows that, the main contribution to the radial electric field inside separatrix (plasma core) gives the term E r (1).  相似文献   

9.
Measurement of plasma internal inductance is important in tokamak plasma experiments (plasma internal inductance relates to the plasma current profile). In this paper we present an experimental investigation of effects of Resonant Helical Field (RHF) on the plasma internal inductance in IR-T1 tokamak. For this purpose, four magnetic probes and also a diamagnetic loop with its compensation coil were constructed and installed on outer surface of the IR-T1 tokamak, and Shafranov parameter, poloidal Beta, and then the internal inductance determined. In order to investigate the effects of RHF on internal inductance, we measured it in presence and also in absence of different modes of the RHF (L = 2, L = 3, L = 2&3). Experimental results show that L = 3 mode can flat the plasma current and increase the plasma internal inductance.  相似文献   

10.
We present an investigation of effect of Toroidal Field (TF) ripple (due to finite number of the toroidal field coils) on the plasma poloidal Beta in IR-T1 Tokamak. For this purpose, array of magnetic probes and also a diamagnetic loop with its compensation coil were designed, constructed, and installed on the outer surface of IR-T1. Amplitude of the TF ripple is obtained 0.01, and also the effect of the TF ripple on the poloidal Beta discussed. In the high field side region of tokamak chamber, the TF ripple effect is decreasing of the poloidal Beta, whereas the low field side has inverse situation.  相似文献   

11.
Time dependence of edge plasma turbulence was investigated in the IR-T1 tokamak. Time dependence of fluctuation level and spectra were measured using Langmuir probe in the region r/a = 0.8–1. In all times of typical shot, the edge plasma was turbulently unstable, with a broad band fluctuation spectrum in the range of frequencies f = 10–1000 kHz. The relative fluctuation level as monitored by the ion saturation current J+ was very high, in the range ?0.1–0.6 all over the time, while the fluctuation power spectra were roughly invariant in shape.  相似文献   

12.
A suitable instrument for electron temperature measurement in Tokamak is electron cyclotron emission diagnostic. We used a heterodyne radiometer in Iran-Tokamak-1 (IR-T1) to measure this parameter. This 5 channel system works in K α-band and has a very fast response time and good resolution frequency for IR-T1 tokamak. This receiver was used outside the Tokamak, perpendicular to B t, and with second harmonic of X-mode, variation of electron temperature was measured.  相似文献   

13.
In this paper we present an experimental study of effects of Resonant Helical Field (RHF) on Shafranov parameter and Shafranov shift in IR-T1 tokamak. For this purpose a four magnetic pickup coils were designed, constructed, and installed on outer surface of the IR-T1 tokamak chamber, and then the Shafranov parameter and Shafranov shift obtained. On the other hand, the external RHF applied on tokamak plasma and its effects on results measured. Experimental results of measurements with and without RHF (L = 2, L = 3, L = 2 & 3) show that the addition of a relatively small amount of RHF especially L = 3 mode could be effective for improving the quality of tokamak plasma discharge by flatting the plasma current and reducing the Shafranov parameter and Shafranov shift.  相似文献   

14.
E × B velocity shear effects on the plasma confinement were investigated in the IR-T1 tokamak. The investigations have been done at the presence of external applied electric and Resonant Helical magnetic Fields (RHF). In this work, experimental data have been measured by using two arrays of the Langmuir probes in both the radial and poloidal directions. A velocity shear stabilization mechanism has also been proposed to be responsible for an improvement in plasma confinement. The results show that Er × B drift velocity (VE×B) reduces about 90 % due to applied biasing and RHF at edge plasma. We have also observed that positive biasing and RHF lead to a significant decrease (>80 %) for radial turbulent transport (ΓE×B) at edge plasma. In this paper, the electrostatic Reynolds stress (Rs) and the shearing rate γE×B have been calculated. We have also compared the Rs and γE×B at presence of the biasing and RHF and without biasing and RHF. A good correlation between confinement modifications and Er × B velocity shear has been found suggesting that confinement enhancement originates at the edge plasma as a consequence of the formation of a particle transport barrier just inside the limiter.  相似文献   

15.
The influence of resonant helical field, RHF, on effective ion charge, Z eff, and impurity radiations on IR-T1 tokamak discharges was studied. The theoretical calculation of Z eff with RHF indicated that the Z eff decreased. To observe the effects of reduced Z eff on impurity radiation, two important parts of plasma were investigated, equilibrium region of plasma and disruptive plasma. The results obtained from previous experiments on equilibrium plasma showed the increased radiation of impurities, in comparison with preceding and next regions, whereas the new results indicate that the impurities radiation decreases remarkably in disruptive part of plasma.  相似文献   

16.
In this paper we presented poloidal flux loops technique for measurement of plasma horizontal displacement in the IR-T1 tokamak. In this technique, two poloidal flux loops were designed and installed on outer surface of the IR-T1 tokamak chamber, and then the plasma displacement was obtained from them. To compare the result obtained using this method, analytical solution is also experimented on the IR-T1. Results of the two methods are in good agreement with each other.  相似文献   

17.
The effect of biasing on the edge plasma electrical fluctuations and their control was investigated. Biasing was applied to both positive and negative polarity in the range of +380 to ?380 V. As soon as biasing was applied, the electrical fluctuations, fluctuations frequency and Hα emission reduced significantly and all of them showed the positive effect of biasing in the edge plasma electrical fluctuations reduction. Experiments also showed that positive biasing is more effective than negative biasing.  相似文献   

18.
In this paper we present an experimental study of effects of Resonant Helical Field (RHF) on Shafranov parameter and Shafranov shift in IR-T1 tokamak. For this purpose a four magnetic pickup coils were designed, constructed, and installed on outer surface of the IR-T1 tokamak chamber, and then the Shafranov parameter and Shafranov shift obtained. On the other hand, the external RHF applied on tokamak plasma and its effects on results measured. Experimental results of measurements with and without RHF (L = 2, L = 3, L = 2 & 3) show that the addition of a relatively small amount of RHF especially L = 3 mode could be effective for improving the quality of tokamak plasma discharge by flatting the plasma current and reducing the Shafranov parameter and Shafranov shift.  相似文献   

19.
The purposes of this paper are determination of the current density and safety factor profiles, J(r) and q(r), in IR-T1 tokamak. For these purposes, a diamagnetic loop with its compensation coil, and also an array of magnetic probes were designed, constructed, and installed on outer surface of the IR-T1 tokamak chamber, and then the poloidal beta and poloidal and radial magnetic fields measured. Moreover, a few approximate values of the internal inductance for the different possible profiles of the plasma current density are also calculated. From the results, current density and q-profiles obtained.  相似文献   

20.
The simulation of the radial electric field shear, which is responsible for L-H transition by means B2SOLPS0.5.2D transport code, gives the dependence of this shear on plasma parameters. Also, as result of uni-directional neutral beam heating, internal transport barrier is formed and ion radial heat flux q ir starts to decrease. Furthermore, the dependence of radial electric field shear on ion temperature gradient ITG has also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号