共查询到17条相似文献,搜索用时 62 毫秒
1.
针对在线用户评论中产品特征的提取和聚类问题进行了研究,提出一种改进的SimRank算法,将情感词-特征对放入二分网中,在二分网中使用改进后的SimRank算法计算特征词之间的相似度;再通过谱聚类算法对特征相似度进行聚类,提取网络产品的特征集合。以某电脑评论为例,从中提取情感词-特征对进行研究,实验结果显示,改进后的算法准确率更高。改进后的特征相似度检测方法可以作为检测特征相似度的有效方法。实验采用在线产品的评论语料,实验结果表明使用改进后的SinRank相似度对特征词进行聚类提取出特征更加准确。 相似文献
2.
一种基于粗糙集理论的谱聚类算法 总被引:1,自引:1,他引:0
谱聚类算法利用特征向量构造简化的数据空间,在降低数据维数的同时,使得数据在子空间中的分布结构更加明显.现有谱聚类算法的聚类结果多为精确集,而真实数据集中重叠现象广泛存在.基于粗糙集理论提出了一种新的谱聚类算法,其主要思想是对谱聚类算法进行粗糙集扩展,使得聚类结果成为具有下近似和上近似定义的、类与类之间存在重叠区域的结构.实验表明,该算法与现有的谱聚类算法相比,稳定性和准确率都有一定的提高. 相似文献
3.
一种基于增量式谱聚类的动态社区自适应发现算法 总被引:6,自引:0,他引:6
针对当前复杂网络动态社区发现的热点问题, 提出一种面向静态网络社区发现的链接相关线性谱聚类算法, 并在此基础上提出一种基于增量式谱聚类的动态社区自适应发现算法. 动态社区发现算法引入归一化图形拉普拉斯矩阵呈现复杂网络节点之间的关 系,采用拉普拉斯本征映射将节点投影到k维欧式空间.为解决离群节点影响谱聚类的效果和启发式确定复杂网络社区数量的问题, 利用提出的链接相关线性谱聚类算法发现初始时间片的社区结构, 使发现社区的过程能够以较低的时间开销自适应地挖掘复杂网络社区结构. 此后, 对于后续相邻的时间片, 提出的增量式谱聚类算法以前一时间片聚类获得的社区特征为基础, 通过调整链接相关线性谱聚类算法实现对后一时间片的增量聚类, 以达到自适应地发现复杂网络动态社区的目的. 在多个数据集的实验表明, 提出的链接相关线性谱聚类算法能够有效地检测出复杂网络中的社区结构以及基于 增量式谱聚类的动态社区自适应发现算法能够有效地挖掘网络中动态社区的演化过程. 相似文献
4.
现有的多视角谱聚类算法大多只线性结合了各视角的基拉普拉斯矩阵,未考虑不同视角数据的差异性对最优拉普拉斯矩阵的影响,存在聚类性能受限的问题。提出一种基于黎曼几何均值与高阶拉普拉斯矩阵的谱聚类算法(RMMSC),挖掘多视角数据中的高阶连接信息与流形信息,提高最优拉普拉斯矩阵对各视角的信息利用率。按一定的权重线性结合数据单一视角的各阶拉普拉斯矩阵,得到每个视角的基拉普拉斯矩阵,通过低阶与高阶连接信息的结合使用,充分体现多视角数据集的全局结构。在此基础上,计算各视角基拉普拉斯矩阵的黎曼几何均值,将其作为最优拉普拉斯矩阵输入谱聚类算法,得到聚类结果。相比于传统矩阵算数均值的计算,基于黎曼流形的黎曼几何均值能够更好地恢复互补层数据的流形信息。实验结果表明,RMMSC在多组标准数据集上聚类效果优于ONMSC、MLAN、AMGL等算法。其中,在Flower17数据集上,精确度较基准算法ONMSC提高了2.14%,纯度提高了1.7%,且收敛性较好。 相似文献
5.
谱聚类的现状及其在社会网络中的应用 总被引:1,自引:0,他引:1
近年来,凭借其重要的研究意义,采用数据聚类去分析社会网络已成为时下最热门的话题之一。这些研究最直接应用的是防止恐怖袭击和社区通过检测疾病的传播。此外,由于社会网络是动态的,而社会关系的变化是可以通过数据聚类方法预测的。从而使得清楚了解社会网络结构将有助于促进社会发展和社会成员间的合作。从数据挖掘角度来看,社交网络是一种不完全的,庞大的,复杂的,动态的网络。而这些特性使得传统的数据聚类方法并不能成功应用在社会网络中。相反,作为一个最流行的现代数据的聚类算法,谱聚类在对社交网络的问题提供了一种系统的,灵活实用的解决方案。理论和实验证明,谱聚类在寻找全局最优解和处理大型数据集方面的性能优于传统聚类算法。一方面审视讨论当今谱聚类的理论和算法,及其优于传统聚类算法的特点。另一方面,也涵盖了社会网络的基本知识及两个典型的谱聚类在社会网络中的应用。 相似文献
6.
7.
子空间聚类的目的是将来自不同子空间的数据分割到其本质上所属的低维子空间。现有的基于数据的自我表示和谱聚类的子空间聚类算法将该问题分为两个连续的阶段:首先从高维数据中学习数据的相似性矩阵,然后通过将谱聚类应用于所学相似性矩阵来推断数据的聚类隶属。通过定义一种新的数据自适应稀疏正则项,并将其与结构稀疏子空间聚类(SSSC)模型和改进的稀疏谱聚类(SSpeC)模型相结合,给出了一个新的统一优化模型。新模型利用数据的相似度和聚类指标的相互引导克服了SSpeC稀疏性惩罚的盲目性,并使得相似度具有了判别性,这有利于将不同子空间的数据分为不同类,弥补了SSSC模型只强制来自相同子空间的数据具有相同标签的缺陷。常用数据集上的实验结果表明,所提模型增强了聚类判别的能力,优于一些经典的两阶段法和SSSC模型。 相似文献
8.
9.
一种改进的k-均值聚类算法 总被引:4,自引:0,他引:4
针对k-均值(k-means)聚类算法中随机选取初始聚类中心的缺陷,提出了一种新的基于数据样本分布选取初始聚类中心的方法.实验结果表明,改进后的算法能改善其聚类性能,并能取得较高的分类准确率. 相似文献
10.
基于图论的图像谱分割是近年来研究热点。本文针对在高分辨率图像的分割中,相似度矩阵和拉普拉斯矩阵的构造数据量大,比较耗时的缺点,提出用基于方差增量的Nystrom方法有效减少矩阵规模,并且采用基于余弦相似度构造权值矩阵,避免了传统的利用高斯公式需人工选择尺度参数。最后,通过在Berkeley图像库上的图像分割实验表明了本算法的可行性和有效性。 相似文献
11.
12.
13.
谱聚类将数据聚类问题转化成图划分问题,通过寻找最优的子图,对数据点进行聚类。谱聚类的关键是构造合适的相似矩阵,将数据集的内在结构真实地描述出来。针对传统的谱聚类算法采用高斯核函数来构造相似矩阵时对尺度参数的选择很敏感,而且在聚类阶段需要随机确定初始的聚类中心,聚类性能也不稳定等问题,本文提出了基于消息传递的谱聚类算法。该算法采用密度自适应的相似性度量方法,可以更好地描述数据点之间的关系,然后利用近邻传播(Affinity propagation,AP)聚类中“消息传递”机制获得高质量的聚类中心,提高了谱聚类算法的性能。实验表明,新算法可以有效地处理多尺度数据集的聚类问题,其聚类性能非常稳定,聚类质量也优于传统的谱聚类算法和k-means算法。 相似文献
14.
针对传统谱聚类算法没有解决簇划分过程中,簇间交叉区域样本点对聚类效果有影响这个问题,提出一种基于局部协方差矩阵的谱聚类算法,主要介绍了一种新的计算样本之间相似度亲和矩阵的方法,即通过计算样本点之间的欧氏距离划分出小子集,计算小子集的协方差,通过设定阈值剔除交叉点,由剩下的点构造相似矩阵,对相似矩阵进行特征值分解,用经典的[k]-means算法对由特征向量组成的矩阵聚类。通过在Control等真实数据集上的实验结果表明,该算法在聚类准确率、标准互信息等指标上比较对比算法获得更优秀的效果。 相似文献
15.
针对现有个性化推荐服务系统中用户会话聚类算法存在相似性度量准确性低和需要事先确定聚类数目的问
题,对序化的用户访问页面和对应的访问时间信息进行整合,提出一种基于动态规划算法的全序列比对方法来度量用
户会话的相似性。在此基础上,运用改进的NJ W谱聚类算法对用户会话进行自动谱聚类。实验结果表明,算法充分
考虑了用户会话的整体特征和局部信息,较相关比对算法具有更高的聚类性能,可以提高网站个性化推荐服务的效
率。 相似文献
16.
聚类算法是近年来国际上机器学习领域的一个新的研究热点。为了能在任意形状的样本空间上聚类,学者们提出了谱聚类和图论聚类等优秀的算法。首先介绍了图论聚类算法中的谱聚类经典NJW算法和NeiMu图论聚类算法的基本思路,提出了改进的自适应谱聚类NJW算法。提出的自适应NJW算法的优点在于无需调试参数,即可自动求出聚类个数,克服了经典NJW算法需要事先设置聚类个数且需反复调试参数δ才能得出数据分类结果的缺点。在UCI标准数据集及实测数据集上对自适应NJW算法与经典NJW算法、自适应NJW算法与NeiMu图论聚类算法进行了比较。实验结果表明,自适应NJW算法方便快捷,且具有较好的实用性。 相似文献