首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antipersonnel mines infest fields all over the world. According to recent estimates, landmines are killing and maiming more than 2000 innocent civilians per month. The problem of landmine detection and removal requires the cooperation of a number of engineering fields, which in turn poses a need for new technologies, such as improved sensors, efficient manipulators and mobile robots. This paper describes the configuration and control architecture of a scanning manipulator for detecting antipersonnel landmines. The scanning system is part of a demining system based on a walking robot that acts as the carrier for the scanning manipulator. Broadly speaking, the scanning system consists of a sensor head that can detect certain kinds of landmines and, to move the sensor head over large areas, a manipulator that has been appropriately sensorized to scan irregular terrains in the presence of obstacles. The proposed control architecture is of the hybrid deliberative/reactive type: A deliberative controller defines a sweep trajectory that furnishes complete coverage of the infested area, while two reactive controllers are involved in on-line adaptation to the environment. Experiments show good performance of the whole system.  相似文献   

2.
3.
This article describes a landmine-detection system that contains a landmine-detection mobile robot and a following mobile robot. In this system, the landmine-detection robot goes ahead, and uses a landmine detector and a GPS module to find a landmine, records the coordinates of its location, and transmits these coordinates to the following mobile robot via a wireless RF interface. The following robot can record the location and orientation of the landmine-detection robot and all the landmines in the region. The following robot moves close to the landmine, and programs a path to avoid obstacles and landmines automatically. The driving system of the landmine-detection mobile robot uses a microprocessor dsPIC 30F4011 as the core, and controls two DC servomotors to program the motion path. The user interface of the landmine-detection robot and the following robot uses Borland C++ Builder language to receive the location data. In the experimental results, the landmine-detection robot records the location of landmines using a GPS module, and transmits the locations to the following robot via a wireless RF interface. The following robot avoids the landmines, and improves the safety of people or materials being carried through the landmine area.  相似文献   

4.
王方  胡彧 《工矿自动化》2013,39(1):91-95
稀疏无线传感器网络中各传感器节点距离较远,而传统的静态数据收集方法要求各传感器节点直接通信,导致网络延迟时间长,能耗高。针对该问题,提出一种基于移动机器人的无线传感器数据收集方法。该方法首先由静态节点选择与路径最短的移动机器人作为簇头,移动机器人比较一定周期内检测到的邻居节点的平均剩余能量与整个网络传感器节点平均剩余能量,根据比较结果决定其是否移动,若移动则采用范围可控的随机移动策略;当移动机器人移动到新位置时,传感器节点更新路由,选择新的移动机器人作为簇头。仿真结果表明,与传统的静态无线传感器网络数据收集方法相比,基于移动机器人的无线传感器网络数据收集方法大大降低了数据传输延迟和节点能量消耗。  相似文献   

5.
一种基于视觉的移动机器人定位系统   总被引:12,自引:0,他引:12       下载免费PDF全文
具有自主的全局定位能力是自主式稳定机器人传感器系统的一项重要功能,为了实现这个目的,国内外均在不断地研究发展各种定位传感器系统,这里介绍了一种采用光学蝗全方位位置传感器系统,该传感器系统由主动式路标、视觉传感器、图象采集与数据处理系统组成,其视觉传感器和数据处理系统可安装在移动机器人上,然后可通过观测路标物「视角定位的方法,计算出机器人在世界坐标系中的位置和方向,实验证明,该系统可以只的在线定位,  相似文献   

6.
Mobile robots have been widely implemented in industrial automation and smart factories. Different types of mobile robots work cooperatively in the workspace to complete some complicated tasks. Therefore, the main requirement for multi-robot systems is collision-free navigation in dynamic environments. In this paper, we propose a sensor network based navigation system for ground mobile robots in dynamic industrial cluttered environments. A range finder sensor network is deployed on factory floor to detect any obstacles in the field of view and perform a global navigation for any robots simultaneously travelling in the factory. The obstacle detection and robot navigation are integrated into the sensor network and the robot is only required for a low-level path tracker. The novelty of this paper is to propose a sensor network based navigation system with a novel artificial potential field (APF) based navigation algorithm. Computer simulations and experiments confirm the performance of the proposed method.  相似文献   

7.
This paper proposes a framework for reactive goal-directed navigation without global positioning facilities in unknown dynamic environments. A mobile sensor network is used for localising regions of interest for path planning of an autonomous mobile robot. The underlying theory is an extension of a generalised gossip algorithm that has been recently developed in a language-measure-theoretic setting. The algorithm has been used to propagate local decisions of target detection over a mobile sensor network and thus, it generates a belief map for the detected target over the network. In this setting, an autonomous mobile robot may communicate only with a few mobile sensing nodes in its own neighbourhood and localise itself relative to the communicating nodes with bounded uncertainties. The robot makes use of the knowledge based on the belief of the mobile sensors to generate a sequence of way-points, leading to a possible goal. The estimated way-points are used by a sampling-based motion planning algorithm to generate feasible trajectories for the robot. The proposed concept has been validated by numerical simulation on a mobile sensor network test-bed and a Dubin’s car-like robot.  相似文献   

8.
Irene Yu-Hua  Tardi 《Pattern recognition》2002,35(12):3001-3014
Air- and vehicle-borne sensor-based technique is a potentially attractive approach for fast detecting landmines and locating landmine fields towards humanitarian demining. For images measured from airborne and vehicle-borne cameras, landmines may be indicated by direct or indirect signs, e.g., spatial difference from their surroundings due to digging or, due to thermal and material signatures. The background in images usually consists of various types of noise and clutter, e.g., thermal noise, sand, gravel road and vegetation, thus making the detection even more difficult. This paper is focused on the following aspects: (1) Finding a robust detector that is suitable for detecting/locating landmine candidates and man-made landmarks by using infrared images measured from vehicle- or air-borne sensors; (2) Interpreting the detector using the 2D isotropic bandpass filter, matched filter, detection theory and thermodynamic-based landmine models; (3) Extending the detector to a multiscale version where landmine detectability is enhanced by automatically selecting a proper scale and localization is improved by inter-scale position tracing. We propose a special type of isotropic feature detector that exploits the characteristic difference between landmines and their surroundings in the spatial-frequency domain under the multiscale framework. Experiments were performed on several infrared images measured from vehicle-borne sensors as well as airborne sensors on a helicopter over the test bed scenarios. The performance of the detector was also evaluated in terms of detectability, localization, and automatic scale selection of the detector. These results and evaluations have shown the effectiveness of the method and its potential in landmine field detection.  相似文献   

9.
Autonomous robots are leaving the laboratories to master new outdoor applications, and walking robots in particular have already shown their potential advantages in these environments, especially on a natural terrain. Gait generation is the key to success in the negotiation of natural terrain with legged robots; however, most of the algorithms devised for hexapods have been tested under laboratory conditions. This paper presents the development of crab and turning gaits for hexapod robots on a natural terrain characterized by containing uneven ground and forbidden zones. The gaits we have developed rely on two empirical rules that derive three control modules that have been tested both under simulation and by experiment. The geometrical model of the SILO-6 walking robot has been used for simulation purposes, while the real SILO-6 walking robot has been used in the experiments. This robot was built as a mobile platform for a sensory system to detect and locate antipersonnel landmines in humanitarian demining missions.  相似文献   

10.
《Advanced Robotics》2013,27(15):1763-1786
The threat and consequences of landmines have led to a multitude of alternative research activities in the field of demining. While mine sensor-focused research has been intensive, there has been relatively less attention given to the problem of automating the detection and removal procedure. Understandably, autonomous robot operation and interaction in unstructured field environments are difficult. This paper addresses this by presenting a robot meant to assist humanitarian demining by providing a cheap, fast, reliable and safe alternative to human deminers risking their lives on a daily basis. The robot, named Gryphon, is able to autonomously scan 2 m2 at a time with any type of mine sensor payload. It then presents acquired sensor images to the operator who selects which spots need further investigation or prodding. The robot then appropriately marks the terrain with paint or marking plates. Gryphon has been extensively field tested in Japan, Croatia and Cambodia.  相似文献   

11.
同时定位与地图构建(SLAM)技术一直以来都是移动机器人实现自主导航和避障的核心问题,移动机器人需要借助传感器来探测周围的物体同时构建出相应区域的地图。由于传统的1D和2D传感器,如超声波传感器、声呐和激光测距仪等在建图过程中无法检测出Z轴(垂直方向)上的信息,易增加机器人发生碰撞的概率,同时影响建图结果的精确度。本文利用Kinect作为机器人SLAM的传感器,将其采集到的三维信息转化成二维的激光数据进行地图构建,同时借助机器人操作系统(robot operating system,ROS)进行仿真分析和实际测试。结果表明Kinect可以弥补1D和2D传感器采集信息的不足,同时能够较好的保持建图的完整性和可靠性,适用于室内的移动机器人SLAM实现。  相似文献   

12.
This paper presents techniques that facilitate mobile robots to be deployed as interactive agents in populated environments such as museum exhibitions or trade shows. The mobile robots can be tele-operated over the Internet and, this way, provide remote access to distant users. Throughout this paper we describe several key techniques that have been developed in this context. To support safe and reliable robot navigation, techniques for environment mapping, robot localization, obstacle detection and people-tracking have been developed. To support the interaction of both web and on-site visitors with the robot and its environment, appropriate software and hardware interfaces have been employed. By using advanced navigation capabilities and appropriate authoring tools, the time required for installing a robotic tour-guide in a museum or a trade fair has been drastically reduced. The developed robotic systems have been thoroughly tested and validated in the real-world conditions offered in the premises of various sites. Such demonstrations ascertain the functionality of the employed techniques, establish the reliability of the complete systems, and provide useful evidence regarding the acceptance of tele-operated robotic tour-guides by the broader public.  相似文献   

13.
This paper presents a way of implementing a model-based predictive controller (MBPC) for mobile robot navigation when unexpected static obstacles are present in the robot environment. The method uses a nonlinear model of mobile robot dynamics, and thus allows an accurate prediction of the future trajectories. An ultrasonic ranging system has been used for obstacle detection. A multilayer perceptron is used to implement the MBPC, allowing real-time implementation and also eliminating the need for high-level data sensor processing. The perceptron has been trained in a supervised manner to reproduce the MBPC behaviour. Experimental results obtained when applying the neural-network controller to a TRC Labmate mobile robot are given in the paper.  相似文献   

14.
A new surface plasmon resonance (SPR) immunosensor has been demonstrated for the determination of 2,4,6-trinitrophenol (TNP) based on the principle of indirect competitive immunoreaction using trinitrophenol–bovine serum albumin (TNP–BSA) conjugate and anti-TNP antibody. TNP–BSA conjugate was immobilized on a SPR chip by physical adsorption. TNP in solution competes with the immobilized TNP–BSA conjugate for binding with anti-TNP antibody, which inhibit the immunoreaction between TNP–BSA conjugate and anti-TNP antibody. The dependence of the inhibition to the concentration of TNP was utilized for quantification of TNP. Regeneration of the sensing surface for multiple analyses can be effected using pepsin solution. The sensor exhibited excellent sensitivity for the detection of TNP in a wide concentration range from 10 ppt to 100 ppb and has promising analytical characteristics, which can be extended to the determination of nitroaromatic explosive compounds for application to on-site detection of landmines.  相似文献   

15.
《Advanced Robotics》2013,27(8):751-771
We propose a new method of sensor planning for mobile robot localization using Bayesian network inference. Since we can model causal relations between situations of the robot's behavior and sensing events as nodes of a Bayesian network, we can use the inference of the network for dealing with uncertainty in sensor planning and thus derive appropriate sensing actions. In this system we employ a multi-layered-behavior architecture for navigation and localization. This architecture effectively combines mapping of local sensor information and the inference via a Bayesian network for sensor planning. The mobile robot recognizes the local sensor patterns for localization and navigation using a learned regression function. Since the environment may change during the navigation and the sensor capability has limitations in the real world, the mobile robot actively gathers sensor information to construct and reconstruct a Bayesian network, and then derives an appropriate sensing action which maximizes a utility function based on inference of the reconstructed network. The utility function takes into account belief of the localization and the sensing cost. We have conducted some simulation and real robot experiments to validate the sensor planning system.  相似文献   

16.
This paper presents a remote manipulation method for mobile manipulator through operator’s gesture. In particular, a track mobile robot is equipped with a 4-DOF robot arm to grasp objects. Operator uses one hand to control both the motion of mobile robot and the posture of robot arm via scheme of gesture polysemy method which is put forward in this paper. A sensor called leap motion (LM), which can obtain the position and posture data of hand, is employed in this system. Two filters were employed to estimate the position and posture of human hand so as to reduce the inherent noise of the sensor. Kalman filter was used to estimate the position, and particle filter was used to estimate the orientation. The advantage of the proposed method is that it is feasible to control a mobile manipulator through just one hand using a LM sensor. The effectiveness of the proposed human–robot interface was verified in laboratory with a series of experiments. And the results indicate that the proposed human–robot interface is able to track the movements of operator’s hand with high accuracy. It is found that the system can be employed by a non-professional operator for robot teleoperation.  相似文献   

17.
Many algorithms have been proposed for detecting anti-tank landmines and discriminating between mines and clutter objects using data generated by a ground penetrating radar (GPR) sensor. Our extensive testing of some of these algorithms has indicated that their performances are strongly dependent upon a variety of factors that are correlated with geographical and environmental conditions. It is typically the case that one algorithm may perform well in one setting and not so well in another. Thus, fusion methods that take advantage of the stronger algorithms for a given setting without suffering from the effects of weaker algorithms in the same setting are needed to improve the robustness of the detection system. In this paper, we discuss, test, and compare seven different fusion methods: Bayesian, distance-based, Dempster-Shafer, Borda count, decision template, Choquet integral, and context-dependent fusion. We present the results of a cross validation experiment that uses a diverse data set together with results of eight detection and discrimination algorithms. These algorithms are the top ranked algorithms after extensive testing. The data set was acquired from multiple collections from four outdoor sites at different locations using the NIITEK GPR system. This collection covers over 41,807 m2 of ground and includes 1593 anti-tank mine encounters.  相似文献   

18.
Mobile robot machining provides more flexible machining mode compared to the robot machining with a fixed base. However, its machining accuracy is frequently questioned. This paper focuses on the accuracy analysis in mobile robot machining. To evaluate the machining error qualitatively, the tool center point (TCP) error index is defined as the distance between the TCP and the designed machining point. The different error sources acting on the TCP error index are enumerated, and the theoretical accuracy analysis is proposed to eliminate the TCP error. The mobile robot machining strategy is then proposed based on the accuracy analysis. To ensure high machining accuracy, the global measurement system locates the position of the workpiece and the mobile platform. The force-controlled grinding head is used to compensate the TCP error. Experimental results show that the TCP error during mobile robot machining is lower than 40 mm, which mainly introduced by the calibration of the workpiece. The force-controlled grinding head can compensate the TCP error and the fluctuation of the grinding force under the control is lower than ±2 N.  相似文献   

19.
Optical mouse sensors have been utilized recently to measure the position and orientation of a mobile robot. This work provides a systematic solution to the problem of locating N optical mouse sensors on a mobile robot with the aim of increasing the quality of the position measurements. The developed analysis gives insights on how the selection of a particular configuration influences the estimation of the robot position, and it allows to compare the effectiveness of different configurations. The results are derived from the analysis of the singular values of a particular matrix obtained by solving the sensor kinematics problem. Moreover, given any mobile robot platform, an end-user procedure is provided to select the best location for N optical mouse sensors on such a platform. The procedure consists of solving a feasible constrained optimization problem.  相似文献   

20.
《Advanced Robotics》2013,27(2):191-204
This paper proposes a quadruped walking robot that has high performance as a working machine. This robot is needed for various tasks controlled by tele-operation, especially for humanitarian mine detection and removal. Since there are numerous personnel landmines that are still in place from many wars, it is desirable to provide a safe and inexpensive tool that civilians can use to remove those mines. The authors have been working on the concept of the humanitarian demining robot systems for 4 years and have performed basic experiments with the first prototype VK-I using the modified quadruped walking robot, TITAN-VIII. After those experiments, it was possible to refine some concepts and now the new robot has a tool (end-effector) changing system on its back, so that by utilizing the legs as manipulation arms and connecting various tools to the foot, it can perform mine detection and removal tasks. Toaccomplish these tasks, we developed various end-effectors that can be attached to the working leg. In this paper we will discuss the mechanical design of the new walking robot called TITAN-IX to be applied to the new system VK-II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号