首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
随着社交网络的发展,融合社交信息的推荐系统在一定程度上解决了协同过滤推荐系统的冷启动和数据稀疏等问题,但是在信任数据稀疏情况下,仍会造成推荐精度降低等问题。为此,提出了一种融合隐含信任度和项目关联度的矩阵分解推荐算法。首先,利用矩阵分解模型将信任数据进行分解,得到用户的潜在被信任矩阵,在此基础上引入用户的影响力,从而提出了基于隐含信任度的推荐模型;然后,为了更好的利用项目间的关联信息,反映项目间的有向性,提出了基于项目关联度的推荐模型;最后,综合两种推荐模型并构建了一种推荐算法TCRMF。实验结果表明,所提算法在评分数据和信任数据稀疏的情况下仍然可以有效地提高推荐算法的精度,具有良好的应用前景。  相似文献   

2.
现有一些方法通过结合传统推荐技术和社交信息,缓解推荐系统中的冷启动问题,但由于可用的社交信息较少,效果不佳.因此,文中提出融合信任隐性影响和信任度的推荐模型,在引入社交信息中信任关系的前提下,不仅考虑用户在信任关系中的显式行为数据,还考虑信任关系的隐性影响(如被信任用户的潜在特征向量),用于获取冷启动用户的偏好特征,有...  相似文献   

3.
利用推荐系统进行群组推荐时,群组成员之间的交互关系对推荐结果有很大影响,但传统的群组推荐算法较少考虑用户信任度的重要性,致使社交关系信息不能得到充分利用。在群组融合时考虑群组内用户间的交互关系,提出一种基于用户信任度和概率矩阵的群组推荐算法。在获取用户信任度数据后,使用概率矩阵分解(PMF)算法补全信任度矩阵并进行归一化处理,得到相似度矩阵,同时在后验概率计算过程中加入用户间的信任度因素,通过极大化后验概率获得预测评分。在此基础上,对群组中用户的权重进行归一化处理,使用基于用户交互关系的权重策略融合群组成员偏好,得到最终的推荐结果。在Epinions和FilmTrust数据集上的实验结果表明,该算法可使融合结果更具群组特性,同时提高推荐结果的可靠性和可解释性,且均方根误差和命中率均优于PMF、NeuMF、RippleNet等对比算法。  相似文献   

4.
针对关联规则个性化好友推荐中规则挖掘效率及推荐有效性不高的问题,首先提出基于散列及位图的改进关联规则算法BHA。该算法通过引入散列技术,减少了频繁2项集挖掘所需的时间;利用位图及相关性质,压缩无关候选项,减少了数据集所需的遍历次数。另外,在BHA的基础上,提出基于相似度及信任度的推荐算法STA,利用出、入相似度定义信任度,有效解决了新浪微博未提供显示信任关系的问题,同时弥补了相似度推荐未考虑用户间远近层次关系的缺陷。采集新浪微博用户数据进行实验,在关联规则挖掘效率的对比上,BHA挖掘所需的平均时间仅为改进AprioiriTid算法的47%;在好友推荐的有效性上,推荐算法STA较SNFRBOAR算法在准确率及召回率上分别提升了15.2%和9.8%。实验结果表明,STA能够有效降低规则挖掘所需的平均时间,并使实际好友推荐的有效性得到提升。  相似文献   

5.
为了解决当前社交网络中基于用户信任的Web服务推荐算法存在的覆盖率不足的问题,整合了当前有关直接信任、间接信任及群体信任度的研究思路,对相关的信任度计算方式进行了扩展研究。在此基础上,提出了一种新的混合信任度算法。 实验结果表明,在召回率、用户信任度和用户争议度等指标上该混合推荐算法优于现有算法ModelTrust,证明了该算法具有覆盖率较高的特点,能解决由单一信任度算法数据稀疏性造成推荐结果不佳的问题。  相似文献   

6.
基于加权关联规则的用户关注项目推荐算法   总被引:3,自引:0,他引:3  
根据每个项受关注的程度对其赋予权值,体现每个项在项集中的重要性,引入选择关注度,体现用户选择项时的倾向,推荐时将苎妻董联规则的置信度相结合,从而为用户更准确的提供关注项目推荐。在实验中比较了文中的算法和一种基于最近邻用户协作过滤算法,实验验证了文中的算法在为用户进行推荐项目时用户的点击率和算法的性能都有所提高。  相似文献   

7.
针对现有推荐系统推荐覆盖范围不高的问题,提出一种融合项目流行度和用户信任关系的矩阵分解推荐算法。合并用户-项目评分矩阵和用户-用户信任关系矩阵,通过矩阵分解的方式同时传递信任和推荐项目,极大提高了推荐算法的覆盖率,但损失了现有方法8%左右的精度。将项目流行度作为权重因子,引入到高稀疏性的用户-项目评分矩阵中,根据项目流行度对用户评分项目和未评分项目分别进行加权处理,提高了推荐算法的准确率。通过在Epinions数据集上的对比实验结果表明,该算法在大幅度改善推荐覆盖率的同时,保证了推荐的准确率,能够给于用户更好的推荐效果。  相似文献   

8.
一种结合推荐对象间关联关系的社会化推荐算法   总被引:2,自引:0,他引:2  
随着社会化媒体的兴起,信息资源的数量呈现爆炸式增长,如何在海量的信息中帮助用户发现有用的知识成为亟需解决的问题.社会化推荐方法作为一种有效的信息过滤技术,由于能够结合社会网络的特点,模拟现实社会中的推荐过程,在分析用户历史行为的基础上,主动向用户推荐满足他们兴趣和需求的信息,受到了研究者们的广泛关注.但目前已有的方法大都只从用户间社会关系的角度出发,仅认为相互信任的朋友间具有相似的兴趣爱好,而忽略了推荐对象间的关联关系对推荐结果产生的影响.针对以上存在的问题,文中从推荐对象间关联关系的角度出发,假设具有关联关系的推荐对象更容易受到同一用户的关注,并进而在已有的社会化推荐算法的基础上,提出了一种结合推荐对象间关联关系进行推荐的算法.算法使用共享的潜在特征空间对目标函数的求解过程进行约束,使其在考虑用户间社会关系的同时,也考虑到推荐对象间关联关系所起到的重要作用.实验结果表明,与主流的推荐算法相比,文中所提出的方法在分类准确率和评分误差等多种评价指标上都取得了更好的结果.  相似文献   

9.
推荐系统是用来解决当今时代信息过载的重要工具。随着在线社交网络的出现和普及,一些基于网络推荐算法研究的出现,已经引起研究者的广泛关注。信任是社会网络中的重要信息之一,通常用来改进基于社交网络的推荐系统,然而,大多数信任感知的推荐系统忽略了用户有不同行为偏好在不同的兴趣域;本文不仅考虑了用户间特定域信任网络,并且结合推荐项目之间特征属性信息,提出了一种新型社会化推荐算法(H-PMF)。实验表明,H-PMF算法在评分误差和推荐精度上都取得了更好的效果。  相似文献   

10.
为了改善传统推荐系统中数据稀疏问题给推荐效果带来的影响,提出了改进非对称相似度和关联正则化的推荐算法。根据不同用户和不同项目之间的不对称关系,提出一种改进相关度计算式,用于预测评分。同时,由于社会化隐式关系的获取难度较大,利用传统相似度获取邻域集合作为用户社会关系,将关联正则化用于约束矩阵分解目标函数,缓解用户信息不对称造成的数据稀疏问题。最后在一些真实数据集上对算法进行验证,实验结果表明,与主流的推荐算法相比,该算法能够更加有效地预测实际评分。  相似文献   

11.
推荐系统是处理信息过载问题的重要手段,现有的基于信任网络推荐算法没有充分挖掘用户信任关系信息,影响推荐效果。提出了综合评估信任(CETrust)的模型,该模型综合考虑了用户间的直接信任和间接信任等因素。结合推荐项目的特征属性信息,集成到概率矩阵的因式分解模型中推荐。实验表明,新提出的推荐算法(H-CETrust)推荐精度高于现有推荐算法的推荐精度。  相似文献   

12.
胡云  李慧  施珺 《计算机应用》2017,37(3):791-795
针对推荐系统中普遍存在的数据稀疏和冷启动等问题,提出一种综合评分和信任关系的社会化推荐算法。首先对网络中新用户的初始信任值进行合理赋值,有效地解决了新用户的信任冷启动问题。鉴于用户的喜好会受其朋友的影响,推荐模型又利用朋友之间的信任矩阵对用户自身的特征向量进行修正,解决了用户特征向量的精准构建及信任传递问题。实验结果表明,所提算法较传统的社会网络推荐算法在性能上有显著提高。  相似文献   

13.
推荐系统作为解决信息过载问题的有效工具,能通过海量历史行为数据挖掘用户偏好,为其提供个性化推荐服务。针对如何利用隐式反馈数据实现个性化推荐进行研究,提出了一种结合信任与相似度的排序模型TSBPR。首先计算受信度与相似度的混合权重取代二值信任关系,初始化新用户信任列表实现将新用户连接进信任网络,其次利用邻居的特征及信任矩阵修正目标用户的特征矩阵解决信任传递问题,最后通过在贝叶斯排序模型(Bayesian Personalized Ranking,BPR)中引入重新构建的信任模型及用户特征得到优化的模型参数并生成最终的项目排序列表。通过实验仿真,证明了TSBPR模型可以提高推荐性能和有效解决冷启动问题。  相似文献   

14.
为了改善推荐系统存在的稀疏性和冷启动问题,提出一种融合信任信息的欧氏嵌入推荐(TREE)算法。首先,利用欧氏嵌入模型将用户和项目嵌入到统一的低维空间中;其次,在用户相似度计算公式中引入项目参与度和用户共同评分因子以度量信任信息;最后,在欧氏嵌入模型中加入社交信任关系正则化项,利用不同偏好的信任用户约束用户的位置向量并生成推荐结果。实验将TREE算法与概率矩阵分解(PMF)、社会正则化(SoReg)模型、社交的矩阵分解(SocialMF)模型、社交信任集成模型(RSTE)四种算法进行对比,当维度为5和10时,在Filmtrust数据集上TREE算法的均方根误差(RMSE)比最优的RSTE算法分别降低了1.60%、5.03%,在Epinions数据集上TREE算法的RMSE比最优的社交矩阵分解模型(SocialMF)算法分别降低了1.12%、1.29%。实验结果表明,TREE算法能进一步缓解稀疏和冷启动问题,提高评分预测的准确性。  相似文献   

15.
周寅莹  章梦怡  余敦辉  朱明 《计算机应用》2022,42(12):3671-3678
针对现有的社会化推荐算法大都忽略了物品间的关联关系对推荐精度的影响,并且未能将用户评分与信任数据进行有效结合的问题,提出一种融合信任隐含相似度与评分相似度的社会化推荐算法(SocialTS)。首先,将用户间的评分相似度与信任隐含相似度进行线性组合以得到用户间可靠的相似朋友;然后,将信任关系融入到项目的相关性分析中,从而得到修正后的相似项目;最后,将相似用户、项目作为正则项添加到矩阵分解(MF)模型下,从而获取用户、项目更准确的特征表示。实验结果表明,当潜在特征维度为10时,与主流的社会化推荐算法TrustSVD相比,SocialTS在FilmTrust和CiaoDVD数据集上的均方根误差(RMSE)分别降低了4.23%和8.38%,平均绝对误差(MAE)分别降低了4.66%和6.88%。SocialTS不仅可以有效改善用户冷启动问题,还能较为准确地预测不同评分数量下用户的实际评分,且具有良好的鲁棒性。  相似文献   

16.
针对目前协同过滤推荐算法存在的冷启动、数据稀疏、可扩展性不高以及未考虑到不同社区簇之间可能存在相关性导致的推荐准确度低的问题,提出了一种在考虑同社区簇内专家信任基础上结合不同社区簇专家信任的推荐算法。在改进相似度计算时,改进算法不仅结合了Jaccard相关系数、用户的平均评分因子以及加权处理的Pearson相关系数,还结合了用来惩罚热门物品权重的流行度。在改进评分预测时,改进算法在引入了传统聚类推荐算法中的同社区簇专家信任后,还引入了不同社区簇专家信任。实验在MovieLens数据集上进行,实验结果表明,改进算法不仅缓解了冷启动和数据稀疏等问题,还显著提高了推荐准确度。  相似文献   

17.
用户关注推荐在微博信息分享平台中扮演着非常重要的角色,现有的用户关注推荐模式多采取内容及背景相似性度量用户距离,且多数使用单一因素进行排序推荐,没有针对用户群体进行分类,推荐效果一般。因此提出了一种针对非名人用户的新型关注推荐算法RTLR,该算法同时使用用户关系和互动行为信息进行推荐,并结合多因素建立逻辑回归模型。从国内用户最多的新浪微博中采集真实数据进行实验,结果显示新型模型有效的提高了关注推荐的准确性。  相似文献   

18.
仅凭相似度来定位邻居用户对传统协同过滤算法的性能有严重的负面影响。引入社会网络中的信任机制,从个体在社交圈中的主观信任和全局声誉角度出发建模。分别考虑用户交互、评分差和用户偏好调节生成直接信任度。利用声誉及专家信任优先模型聚合生成间接信任度,将两者动态加权形成用户之间的信任关系。用参数[η]协调信任和相似双属性,使用户关系更加紧密,有效地解决新用户和稀疏性问题。经实证,改良后的模型颇有成效。  相似文献   

19.
为了解决协同过滤算法推荐精度低的问题,提出基于用户相似度和信任度的药品推荐算法。该方法通过离线使用DBSCAN算法对药品进行聚类来降低时间复杂度。引入共同评分药品阈值使用户相似度计算更准确,同时设置相似度阈值来限定相似性邻居的选取以克服KNN算法选取邻居的缺陷。根据用户的推荐可信度和评分可信度建立信任计算模型,计算基于相似邻居集的可信邻居集。通过两次邻居选择策略为目标用户产生药品推荐。仿真结果表明,该算法与其他算法相比在平均绝对误差、准确率和召回率上有更好的性能,提高了系统推荐精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号