共查询到18条相似文献,搜索用时 78 毫秒
1.
为了使长短时记忆网络(Long Short-Term Memory,LSTM)更精确地提取句子较远的特征信息,提出一种融合顺序遗忘编码(Fixed-size Oradinally Forgetting Encoding,FOFE)结合循环神经网络的命名实体识别算法。利用FOFE可以保留任意长度句子信息的编码方式来增强LSTM对句子特征的提取能力。利用Bi-LSTM和FOFE编码分别对向量化表示的文本进行特征提取和编码表示。结合得到的两个特征向量,通过注意力机制对Bi-LSTM的输入与输出之间的相关性进行计算,最后利用条件随机场学习标签序列的约束。该算法分别在英文和中文两种语言的数据集中进行了对比实验,F1值分别达到了91.30和91.65,验证了该方法的有效性。 相似文献
2.
现有的维吾尔文命名实体识别主要采用基于条件随机场的统计学习方法,但依赖于人工提取的特征工程和领域知识。针对该问题,该文提出了一种基于深度神经网络的学习方法,并引入不同的特征向量表示。首先利用大规模未标注语料训练的词向量模型获取每个单词具有语义信息的词向量;其次,利用Bi-LSTM提取单词的字符级向量;然后,利用直接串联法或注意力机制处理词向量和字符级向量,进一步获取联合向量表示;最后,用Bi-LSTM-CRF深度神经网络模型进行命名实体标注。实验结果表明,以基于注意力机制的联合向量表示作为输入的Bi-LSTM-CRF方法在维吾尔文命名实体识别上F值达到90.13%。 相似文献
3.
4.
现有命名实体识别模型在字嵌入过程中多采用字符向量、字向量等不同单词表示向量的拼接或累加方式提取信息,未考虑不同单词表示特征之间的相互依赖关系,导致单词内部特征信息获取不足。提出一种基于交互式特征融合的嵌套命名实体识别模型,通过交互的方式构建不同特征之间的通信桥梁,以捕获多特征之间的依赖关系。采用交互机制得到包含不同单词表示信息的字嵌入向量,基于双向长短时记忆网络提取单词的表示特征,并对不同单词的表示特征进行交互,捕获特征之间的相互依赖关系。为进一步提取序列特征的上下文信息,采用基于特征交互的多头注意力机制捕获句子上下文的依赖关系。在此基础上,采用二元序列标记法过滤非实体区域,得到粗粒度候选区间,并对其进行细粒度划分以判断实体类别。实验结果表明,该模型的召回率和F1值为72.4%和71.2%,相比现有的嵌套命名实体识别模型,F1值平均提高了1.72%。 相似文献
5.
医疗实体识别是从医疗文本中识别疾病、症状、药物等多种类型的医疗实体,能够为知识图谱、智慧医疗等下游任务的发展提供支持。针对现有命名实体识别模型提取语义特征较单一、对医疗文本语义理解能力不足的问题,提出一种基于多重注意力机制的神经网络模型MANM。为捕获文本中更丰富的语义特征,在模型输入中引入医疗词汇先验知识,通过自注意力机制获取医疗文本的全局语义特征,并利用双线性注意力机制获取词汇和字符层面的潜在语义特征,得到包含字词间依赖关系的特征向量。为提高模型的上下文信息捕捉能力,采用改进的长短时记忆网络提取文本时序特征,同时设计多头自注意力机制获取词语间隐含的关联语义特征。最后融合上述多层次语义特征,利用条件随机场进行实体识别。在公开数据集CMeEE、CCKS2019、CCKS2020上进行对比实验,实验结果表明,MANM模型在3个数据集上的F1值分别达到64.29%、86.12%、90.32%,验证了所提方法在医疗实体识别中的有效性。 相似文献
6.
7.
军事命名实体识别能够为情报分析、指挥决策等环节提供自动化辅助支持,是提升指挥信息系统智能化程度的关键技术手段。由于中文文化和英文文化的不同,中国语言文字中实体识别第1步是对文章字句进行分词,分词的不准确则会直接造成命名实体识别上的精度损失。此外,一段字句中命名实体的识别是与上下文信息相关的,不同字词对实体识别的贡献度不一定是正向的,多余的字词信息只会对命名实体识别起到负面作用。针对上述挑战,提出了 Lattice长短时记忆神经网络 (LSTM) 结合自注意力机制(self-attention) 的融合网络模型。Lattice-LSTM 结构可以实现对字句中特殊字词的识别,并将深层的字词信息聚合到基于字符的 LSTM-CRF 模型中。Self-attention结构可以发现同一句子中词之间的关系特征或语义特征。使用人工标注的小规模样本集进行实验,结果表明该模型相较于几种基线模型取得了更理想的效果。 相似文献
8.
针对网购评论命名实体识别中重要词汇被忽略的问题,在评论短文本处理基础上,借鉴多头注意力机制、词汇贡献度和双向长短时记忆条件随机场提出一种基于MA-BiLSTM-CRF模型的网购评论命名实体识别方法。首先,用词向量和词性向量的组合来表示评论文本语义信息;其次,用BiLSTM提取文本特征;然后,引入多头注意力机制从多层面、多角度提升模型性能;最后,用条件随机场(CRF)识别命名实体。实验结果表明,该方法能提升网购评论实体识别效果。 相似文献
9.
10.
医疗命名实体识别指从海量的非结构化的医疗数据中提取关键信息,为医学研究的发展和智慧医疗系统的普及提供了基础.深度学习运用深层非线性的神经网络结构能够学习到复杂、抽象的特征,可实现对数据更本质的表征.医疗命名实体识别采用深度学习模型可明显提升效果.首先,本文综述了医疗命名实体识别特有的难点以及传统的识别方法;其次,总结了基于深度学习方法的模型并介绍了较为流行的模型改进方法,包括针对特征向量的改进,针对数据匮乏、复杂命名实体识别等问题的改进;最后,通过综合论述对未来的研究方向进行展望. 相似文献
11.
12.
针对在医疗命名实体识别(MNER)问题中随着网络加深,基于深度学习的识别模型出现的识别精度与算力要求不平衡的问题,提出一种基于深度自编码的医疗命名实体识别模型CasSAttMNER。首先,使用编码与解码间深度差平衡策略,以经过蒸馏的Transformer语言模型RBT6作为编码器以减小编码深度以及降低对训练和应用上的算力要求;然后,使用双向长短期记忆(BiLSTM)网络和条件随机场(CRF)提出了级联式多任务双解码器,从而完成实体提及序列标注与实体类别判断;最后,基于自注意力机制在实体类别中增加实体提及过程抽取的隐解码信息,以此来优化模型设计。实验结果表明,CasSAttMNER在两个中文医疗实体数据集上的F值度量可分别达到0.943 9和0.945 7,较基线模型分别提高了3个百分点和8个百分点,验证了该模型更进一步地提升了解码器性能。 相似文献
13.
14.
在生物医学临床病历文本的命名实体识别任务中,传统的解决方案由于对实体的边界划分不够精确,影响了部分复合实体的识别。通过研究复合实体的特性,提出一种集成的卷积神经网络(E-CNN)模型与双向长短期记忆网络(BLSTM)和条件随机场(CRF)结合的模型,通过对CNN中的卷积层设定不同卷积窗口的大小,来捕获多个词语之间更丰富的边界特征信息。然后将集成的特征信息传递给BLSTM模型进行训练,最后由CRF模型得到最终的序列标注。实验结果表明,该方法针对临床病历文本中的复合实体识别具有良好的效果。 相似文献
15.
中文命名实体识别在多个重要领域有广泛的运用,提出一种基于转移学习的算法进行中文命名实体识别,旨在提高识别的准确率和召回率。基于转移学习算法的中心思想是开始以一些简单的结论应用于问题,然后在每个步骤应用转换,选择出每次转换的最优结论再次应用于问题,当选择的转换在足够的空间内不再修改数据时算法停止。提出算法的规则模板和约束文件的获取方法,形成一个完整的用于中文命名实体识别的模型,并利用该模型进行实验,获得了较好的结果。 相似文献
16.
通过识别机场的业务实体能够帮助管理者在网络舆情中快速定位服务中的痛点问题.旅客评价中存在较多的复杂实体并伴随有数据类别失衡的现象,针对此提出融入集成卷积(E-CNN)和注意力机制(Attention)的实体识别方法.主要利用人工标注和半监督思想结合的方法获取旅客评价的数据集,通过ECNN获取多范围的文本特征信息,由双向... 相似文献
17.
命名实体识别属于自然语言处理的基础研究领域,是信息抽取、信息检索、机器翻译、组块分析、问答系统等多种自然语言处理技术的重要基础。主要研究中文命名实体中对复杂地名和复杂机构名的识别,提出一种基于多层条件随机场的命名实体识别的方法。对大规模真实语料进行开放测试,两项识别的召回率、准确率和F值分别达到91.95%、89.99%、90.50%和90.07%、88.72%、89.39%。 相似文献
18.
为了解决多模态命名实体识别方法中存在的图文语义缺失、多模态表征语义不明确等问题,提出了一种图文语义增强的多模态命名实体识别方法。其中,利用多种预训练模型分别提取文本特征、字符特征、区域视觉特征、图像关键字和视觉标签,以全面描述图文数据的语义信息;采用Transformer和跨模态注意力机制,挖掘图文特征间的互补语义关系,以引导特征融合,从而生成语义补全的文本表征和语义增强的多模态表征;整合边界检测、实体类别检测和命名实体识别任务,构建了多任务标签解码器,该解码器能对输入特征进行细粒度语义解码,以提高预测特征的语义准确性;使用这个解码器对文本表征和多模态表征进行联合解码,以获得全局最优的预测标签。在Twitter-2015和Twitter-2017基准数据集的大量实验结果显示,该方法在平均F1值上分别提升了1.00%和1.41%,表明该模型具有较强的命名实体识别能力。 相似文献