首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flexible manufacturing systems (FMSs) are allowing firms to take advantage of diversified, low volume production of products with short life-cycles. The flexibility provided by an FMS improves the ability of a system to respond to change. Several types of manufacturing flexibility (M F) have been identified in the literature. Ideally, it is desirable to provide an FMS with all types of flexibility. However, there is a general consensus on the discordant nature of some of the flexibilities. This makes it imperative for management to recognize which flexibilities it deems critical to the manufacturing strategy of the firm. This allows the management to trade-off some of the less important flexibilities for the more important ones, as the need arises.

This study is an attempt toward an empirical examination of the flexibility trade-offs in an FMS. By using computer simulation, we study the flexibility tradeoffs in the stochastic environment of a random FMS. Various configurations of the FMS are simulated under the influence of a variety of loading and dispatching strategies. The results show that there is a trade-off among the various flexibility types under most circumstances. However, some scenarios illustrate that an appropriate combination of the variables like scheduling environment, product variety, and system configuration, can be effective in containing these trade-offs. In other cases, it is seen that the FMS can accommodate more than one flexibility type simultaneously.  相似文献   

2.
This paper focuses on a simulation-based experimental study of the effects of routing flexibility, sequencing flexibility, and part sequencing rules on the performance of a typical FMS. Three routing flexibility levels, five sequencing flexibility levels, and four scheduling rules for part sequencing decision are considered for detailed investigation. The system work load characterised by the mean interarrival time of parts has been set at different levels. The performance of the FMS is evaluated using various measures related to flow time and tardiness of parts. The simulation results are subjected to statistical analysis. Multiple regression-based metamodels have been developed using the simulation results. The analyses of results reveal that deterioration in system performance can be minimised substantially by incorporating either routing flexibility or sequencing flexibility or both. However, the benefits of either of these flexibilities diminish at higher flexibility levels. When flexibility exists, part sequencing rules such as the earliest due date and earliest operation due date provide a better performance for all the measures.  相似文献   

3.
Past research on manufacturing flexibility has emphasized technology and its contributions to flexibility. This study examines the role of sourcing practices in achieving manufacturing flexibilities. Manufacturing flexibility is conceptualized as a multi-dimensional construct and a taxonomy of existing research is developed. An exploratory empirical examination of the sourcing practices-flexibility linkage using canonical correlation and regression analysis suggests significant relationships between sourcing practice and manufacturing flexibilities. The results support the need for treating manufacturing flexibility as a multi-dimensional construct. The results also suggest that a firm could deploy specific sourcing practices to target specific manufacturing flexibilities in pursuit of agilitybased competitive advantages.  相似文献   

4.
Research has found that while flexibility is purported to be a prime advantage of flexible manufacturing systems (FMS), it has not yet become a major competitive priority for American and European manufacturers. Moreover, many installed systems either are not very flexible or do not use the available flexibility to the best advantages. We suspect that inappropriate application of the conventional production management concepts to FMS is one of the major factors that hinders current FMSs from capturing their key advantage: flexibility. This paper takes a first step to examine why the conventional job shop loading and fixed routeing concepts fail to capture the flexibility of FMS. Once problems are identified we suggest ways to exploit the FMS flexibility. We further conduct an experiment to investigate FMS performance under different manufacturing policies and operating conditions. The results indicate that the performance of an FMS greatly diminishes when the conventional job shop loading and fixed routeing concepts are applied. This is because the inherent flexibility of the FMS is not fully utilized. Moreover, the operating conditions such as tooling duplication levels and operation processing time variation could also significantly affect the FMS performance.  相似文献   

5.
This study consolidates and extends previous research to propose a theoretical framework of manufacturing flexibility. The framework proposes antecedent roles for manufacturing flexibilities in supporting a range of agility-related manufacturing priorities; suggests how such manufacturing flexibilities can be developed; and relates the effects of alignment between flexibility-facilitated manufacturing outcomes and business strategy on firm performance. A questionnaire was administered to 1700 senior level managers in manufacturing firms, with 322 valid surveys returned for data analysis. The results support the framework, and suggest that different manufacturing priorities can be facilitated through the development of specific manufacturing flexibilities. The results also indicate that these manufacturing flexibilities can be acquired through the development of purchasing competence in a firm. The data provide partial support for a relationship between congruity in manufacturing and business goals, and firm performance.  相似文献   

6.
制造柔性的概念框架及其度量   总被引:5,自引:0,他引:5  
研究了制造柔性的概念,讨论了制造柔性的特点及其对制造系统综合运行性能的影响,提出了一个用于对制造柔性进行分类的概念框架,探讨了制造柔性的度量方法。  相似文献   

7.
This paper presents a new algorithm for the flexible manufacturing system (FMS) scheduling problem. The proposed algorithm is a heuristic based on filtered beam search. It considers finite buffer capacity, routing and sequence flexibilities and generates machine and automated guided vehicle (AGV) schedules for a given scheduling period. A new deadlock resolution mechanism is also developed as an integral part of the proposed algorithm. The performance of the algorithm is compared with several machine and AGV dispatching rules using mean flow time, mean tardiness and makespan criteria. It is also used to examine the effects of scheduling factors (i.e., machine and AGV load levels, routing and sequence flexibilities, etc.) on the system performance. The results indicate that the proposed scheduling algorithm yields considerable improvements in system performance over dispatching rules under a wide variety of experimental conditions.  相似文献   

8.
For the manufacturing system that consists of multiple assembly lines, this paper investigates the method of improving its process flexibility under bill of material (BOM) constraints. Based on the flexibility measurement developed in part I, generic characteristics of the capability configuration of assembly lines that ensure it more flexible are first investigated on two hierarchical and highly interrelated levels: the assembly line level and the system level. These characteristics are termed ‘structural properties’ of process flexibility under BOM constraints, which are valuable because they provide an effective way of improving flexibility of the manufacturing system through investing in limited operational flexibility of machines in the assembly lines. According to the obtained structural properties, guidelines for improving process flexibility on the two levels are then developed. The proposed guidelines can help the manager of a manufacturing system to make effective decisions on flexibility improvement without much computation effort. Results of simulation experiments illustrate that the proposed structural properties and guidelines are effective and widely applicable to real manufacturing systems.  相似文献   

9.
Manufacturing industries today are faced with steady and unrelenting changes to the environment in which they operate. In order to survive and profit, manufacturing facilities must be designed such that they exhibit desirable system-level flexibility characteristics. The relationships between flexibility and manufacturing system design, however, remain largely unexplored. This paper investigates the effects of manufacturing system design on product, mix, production, and volume flexibilities, and on trade-offs between these flexibility types, for different product environments. Of particular concern is the determination of whether or not flexibility trade-offs can be avoided, and if so, how. Simulation experiments are performed to determine flexibility values for 16 different manufacturing system design 'approaches' and two levels of part processing flexibility. A total of 800 different manufacturing system/product set combinations are investigated. The results indicate that the effects of manufacturing system design on flexibility are not always intuitive, and that they can change depending upon the level of part processing flexibility present. In addition, however, they show that flexibility trade-offs are not inevitable: multiple flexibility types can be increased in value simultaneously through proper selection of the design approach.  相似文献   

10.
An important element in the successful operation of flexible manufacturing systems (FMS) is the management of the tooling component. This paper reports on one aspect of tool management for FMS operations. Four tool allocation and scheduling strategies are compared in the presence of three part selection rules through a simulation study of a five-machine FMS with an automated tool handling system. The tool allocation strategies are similar to those used in industry while the part selection rules are synthesized from the literature on FMS scheduling under tooling constraints. The use of different tooling strategies produces significantly different outcomes in FMS performance.  相似文献   

11.
Industrial experience has shown that it is virtually impossible to implement a large-scale flexible manufacturing system (FMS) without using the group technology manufacturing concept. However, grouping machines into product cells can limit the FMS flexibility. Thus when the production cells are not completely disjoint, problems under multi-cell flexible manufacturing systems (MCFMS) can be caused by changes in job mix and demand which lead to a workload imbalance both between cells and between machine centres within the same cell. The problems can be mitigated and shop performance improved by transferring workloads from a congested machine centre in one cell to an alternative, less congested machine centre in another cell. Such inter-cell workload transfer results in a hybrid MCFMS which is a cross between a parts similarity-based MCFMS and a process similarity-based MCFMS. Results of a simulation study carried out by the author show that inter-cell workload transfer is very effective in improving shop performance. This paper briefly describes the simulation study and discusses the implications of its results for the design and operation of FMSs. The operational viability, and economic feasibility of hybrid MCFMSs are also discussed in the paper.  相似文献   

12.
Analytical approximations for the performance of flexible manufacturing systems (FMS) with blocking of machines due to limited local buffers are presented. The approximations are based on a detailed analysis of FMS configurations used in industry. The method proposed uses informations generated by applying the classical closed queueing network (CQN) model to the FMS. The approximations developed are tested against simulation models for a wide variety of FMS configurations. The results presented show that the approximations are very good.  相似文献   

13.
This paper describes an intelligent decision support system (IDSS) for real time control of a flexible manufacturing system (FMS). The controller is capable of classifying symptoms in developing the control policies on FMSs with flexibility in operation assignment and scheduling of multi-purpose machining centres which have different tools with their own efficiency. The proposed system is implemented by coupling of rule-based IDSS, simulation block and centralised simulation optimiser for elicitation of shop floor control knowledge. This posteriori adaptive controller uses a new bilateral mechanism in simulation optimiser block for offline training of IDSS based on multi-performance criteria simulation optimisation. The proposed intelligent controller receives online information of the FMS current state and trigger appropriate control rule within real-time simulation data exchange. Finally the FMS intelligent controller is validated by a benchmark test problem. Application of this adaptive controller showed that it could be an effective approach for real time control of various flexible manufacturing systems.  相似文献   

14.
Flexible manufacturing system (FMS) is described as a set of computerised numerical controlled machines, input–output buffers interconnected by automated material handling devices. This paper develops a bi-objective operation allocation and material handling equipment selection problem in FMS with the aim of minimising the machine operation, material handling and machine setup costs and maximising the machine utilisation. The proposed model is solved by a modified chaotic ant swarm simulation based optimisation (CAS2O) while applying pre-selection and discrete recombination operators is surveyed a capable method to simulate different experiments of FMS problems. A test problem is selected from the literature to evaluate the performance of the proposed approach. The results validate the effectiveness of the proposed method to solve the FMS scheduling problem.  相似文献   

15.
Many manufacturing organizations are looking to Flexible'Manufacturing System technology for improvements in process flexibility. Faced with the need to produce, in less time, more customized products of highest quality and lowest cost, process flexibility is a growing concern of m a n y manufacturing organizations. In this paper, an eight step procedure for the proper installation of an FMS is presented. The purpose of the paper is to provide companies with a systematic approach for the installation of such manufacturing technologies as FMS.  相似文献   

16.
A flexible manufacturing system (FMS) is highly capital-intensive and FMS users are concerned with achieving high system utilization. The production planning function for setting up an FMS prior to production should be developed in order to make the most of the potential benefits of FMSs. We consider two production planning problems of grouping and loading a flexible flow system, which is an important subset of FMSs where the routing of parts is unidirectional. We show that considering this routing restriction as well as limited machine flexibility strongly affects both the solution techniques and the quality of the solutions. Because of the complexity of the problem, we present a heuristic approach that decomposes the original problem into three interrelated subproblems. We show that the proposed approach usually finds a near-optimum solution and is superior to an approach that exists in the literature of FMS production planning. We also introduce effective heuristic methods for two new subproblems that arise because of the unidirectional flow precedence and flexibility constraints. Computational results are reported and future research issues are discussed.  相似文献   

17.
This study provides a detailed understanding of the flexibilities that affect performance of innovation projects in the fuzzy front end (FFE) stage. We use the ambidextrous theory approach along with theories on flexibility to propose key drivers of design resilience in innovation projects. A set of six in-depth case studies across a variety of contextual settings is used to investigate important sources of flexibilities that contribute to design resilience. The effects of different design flexibility on the firms’ design resilience are examined. Specifically, an in-depth examination of ‘within case’ trends suggested key design flexibilities to be further examined in the ‘across case’ analyses. Our findings provide valuable insights about the enabling design flexibilities and contextual effects of design resilience in the FFE stage of innovation projects. Based on the findings from the case studies, four sources of design flexibility emerged that vary in terms of their influence on design resilience: (1) iterative learning, (2) modularity, (3) engineering change management and (4) design reuse. Patterns from the ‘across case’ analyses were then used to isolate specific types of design flexibilities that are important for design resilience and organisational resilience. We also provide categorisation of these drivers of design resilience in the context of passive flexibility and active flexibility practices. One of the major contributions of the study is that it provides a detailed categorisation of design resilience in relation to organisational resilience.  相似文献   

18.
Automated guided vehicle (AGV) systems complement the operation of flexible manufacturing systems (FMS) by providing integrated automated material handling that capitalizes on the system's flexibility. Previous research considering AGV systems for use in FMS installations has focused on complex control strategies to reduce the congestion problem often encountered in these systems. Recently, attention has been given to tandem system configurations that reduce congestion and simplify system control. The present study uses the simulation methodology to compare the performance of three AGV configurations under a variety of experimental conditions. The results indicate that system size, load/unload time, and machine failure rate factors have significant impacts on the operation of the systems considered. In general, with respect to due date performance, it is recommended to use the traditional configuration in small systems while using the tandem/loop configuration in larger systems. Furthermore, it is shown that the addition of the loop to the tandem configuration mitigates the sensitivity of the tandem configuration to the load/unload time factor as well as significantly improving its performance under high load/unload times. Thus, if tandem configuration is desired to reduce congestion and simplify system control, investments must be made to directly reduce the load/unload times or to construct a loop to avoid the load/unload time penalty.  相似文献   

19.
Considering the high required capital outlay and moderate risk of a flexible manufacturing system (FMS) investment, economic justification techniques are insufficient by themselves since they cannot cope with the benefits such as flexibility and enhanced quality offered by advanced manufacturing technologies. A robust decision-making procedure for evaluating FMS requires the consideration of both economic and strategic investment measures. A distance-based fuzzy multicriteria decision-making (MCDM) framework based on the concepts of ideal and anti-ideal solutions is presented for the selection of an FMS from a set of mutually exclusive alternatives. The proposed method provides the means for integrating the economic figure of merit with the strategic performance variables. The multicriteria decision approach presented here enables us to incorporate data in the forms of linguistic variables, triangular fuzzy numbers and crisp numbers into the evaluation process of FMS alternatives. Linguistic variables are also used to indicate the criteria's importance weights assigned by the decisionmakers. A comprehensive example illustrates the application of the multicriteria decision analysis.  相似文献   

20.
This paper reports the results of an experimental investigation of scheduling decision rules for a dedicated flexible manufacturing system. A simulation model of an existing flexible manufacturing system (FMS) comprised of 16 computer numerical controlled machines (CNC) was constructed using actual operation routings and machining times to evaluate the performance of various part loading and routing procedures. The results indicate that FMS performance is significantly affected by the choice of heuristic parts scheduling rules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号