首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 95 毫秒
1.
张银雪  田学民  曹玉苹 《计算机应用》2012,32(12):3326-3330
针对人工蜂群(ABC)算法存在收敛速度慢、收敛精度低的问题,给出一种改进的人工蜂群算法用于数值函数优化问题。在ABC的邻域搜索公式中利用目标函数自适应调整步长,并根据迭代次数非线性减小侦查蜂的搜索范围。改进ABC算法提高了ABC算法的局部搜索能力,能够有效避免早熟收敛。基于6个标准测试函数的仿真实验表明,改进ABC算法的寻优能力有较大提高,对于多个高维多模态函数该算法可取得理论全局最优解。与对比算法相比,该算法具有更高的收敛精度,并且收敛速度更快。  相似文献   

2.
针对人工蜂群算法存在易陷入局部最优、收敛速度慢的缺陷,提出一种改进邻域搜索策略的人工蜂群算法.首先,将混沌思想和反向学习方法引入初始种群,设计混沌反向解初始化策略,以增大种群多样性,增强跳出局部最优的能力;然后,在跟随蜂阶段根据更新前个体最优位置引入量子行为模拟人工蜂群获取最优解,通过交叉率设计更新前个体最优位置,并利用势阱模型的控制参数提高平衡探索与开发的能力,对观察蜂邻域搜索策略进行改进,以提高算法的收敛速度和精度;最后,将改进人工蜂群算法与粒子群算法、蚁群算法以及其他改进人工蜂群算法进行比较,利用12个标准测试函数进行仿真分析.结果表明,改进算法不仅提高了收敛速度和精度,而且在高维函数优化方面具有一定的优势.  相似文献   

3.
针对人工蜂群算法存在开发与探索能力不平衡的缺点,提出了具有自适应全局最优引导快速搜索策略的改进算法.在该策略中,首先采蜜蜂利用自适应搜索方程平衡了不同搜索方法的探索和开发能力;其次跟随蜂利用全局最优引导邻域搜索方程对蜜源进行精细化搜索,以提高其收敛精度和全局搜索能力.14个标准测试函数的仿真结果表明,相比其他算法,所提出的改进算法有效平衡了算法的开发与探索能力,并提高了其最优解的精度及收敛速度.  相似文献   

4.
针对标准人工蜂群(ABC)算法易陷入局部极值的问题,对标准ABC算法的轮盘赌选择机制进行了修改,提出了一种基于动态评价选择策略的改进人工蜂群(DSABC)算法。首先,根据到当前为止一定迭代次数内蜜源位置的连续更新或停滞次数,对每个蜜源位置进行动态评价;然后,利用所得的评价函数值为蜜源招募跟随蜂。在6个经典测试函数上的实验结果表明:与标准ABC算法相比,动态评价选择策略改进了标准ABC算法的选择机制,使得DSABC算法的求解精度有较大幅度提高,特别是对于两种不同维数的Rosenbrock函数,所得最优值的绝对误差分别由0.0017和0.0013减小到0.000049和0.000057;而且,DSABC算法克服了进化后期因群体位置多样性丢失较快而产生的早熟收敛现象,提高了整个种群的收敛精度及解的稳定性,从而为函数优化问题提供了一种高效可靠的求解方法。  相似文献   

5.
为避免人工蜂群算法陷入早熟,提出一种基于动态搜索策略的人工蜂群算法,新算法改进了人工蜂群算法的搜索策略,将两种不同的搜索策略组合成新的搜索策略,以便动态利用两种不同搜索策略的优点,平衡了算法的局部搜索能力和全局搜索能力。基准函数的仿真实验表明,新算法收敛速度快、求解精度高、鲁棒性较强,适合求解高维复杂的全局优化问题。  相似文献   

6.
7.
一种带共享因子的人工蜂群算法   总被引:1,自引:0,他引:1       下载免费PDF全文
王辉 《计算机工程》2011,37(22):139-142
人工蜂群(ABC)算法在搜索过程中收敛速度较慢,且容易出现早熟现象。针对该问题,提出一种带共享因子的ABC算法。通过共享因子动态调整蜜蜂与其邻域个体之间的信息共享程度,在搜索初始阶段适当减小信息共享,避免蜂群飞过最优解所在区域,在搜索中后期增强信息共享,提高蜂群的全局寻优性能。函数测试结果表明,该算法具有较好的收敛性能,适用于求解复杂函数优化问题。  相似文献   

8.
深层加速搜索的蜂群算法   总被引:1,自引:1,他引:0  
蜂群(ABC)算法是近年来提出的一种求解优化问题的较新型的仿生进化算法。针对蜂群算法的不足,依据反向搜索的思想,提出一种改进的蜂群算法。在改进算法中,每次邻域搜索之后,通过比较新旧食物源位置的花蜜值(而非适应度)来选择保留较优解。同时,在采蜜蜂采蜜后以一定概率进行反向搜索,保留较优解。邻域搜索的维数也不再限定某一维。基于五个标准测试函数的仿真结果表明,本算法能有效加快收敛速度,提高最优解的精度,其性能明显优于基本的蜂群算法。  相似文献   

9.
针对人工蜂群算法(Artificial Bee Colony,ABC)邻域搜索能力不强且容易陷入局部最优的不足,引入禁忌搜索的思想,提出了基于禁忌搜索的人工蜂群算法(TS_ABC)。TS_ABC算法在ABC算法的基础上加入两个禁忌表,分别记为禁忌表T1和禁忌表T2。禁忌表T1的长度是有限的,存储蜜蜂访问过的当前解;禁忌表T2的长度是无限的,存储优化[limit]次后没有改进的解。蜜蜂在蜜源位置搜索新解时要跳过禁忌表里的解,这样避免了重复搜索,增强了邻域搜索能力,克服了容易陷入局部最优。15个标准函数上实验结果表明:(1)TS_ABC的性能优于ABC算法;(2)在求解多峰函数最优解时,TS_ABC性能更加优于ABC算法;(3)随着函数维数的增加,相对于ABC算法,TS_ABC性能提高更多。3个标准函数上实验结果表明:TS_ABC算法性能优于ABC算法,即提出的使用两个禁忌表的方法优于只使用一个禁忌表的方法。  相似文献   

10.
为改善人工蜂群算法(ABC)的深度搜索能力,提出一种改进的人工蜂群算法(SABC)。借鉴混合蛙跳算法(SFLA)的进化机制,将蜂群划分为多个模因组,使每个新个体与自身所在模因组的最坏个体进行优劣比较,能够更加容易保存群体中的"新生"个体,改善群体的整体质量,增加算法的深度搜索能力。通过7个测试函数进行实验,统计结果表明了SABC算法在求解函数优化问题时具有较好的算法性能。  相似文献   

11.
改进的蜂群算法   总被引:1,自引:0,他引:1  
王辉 《计算机工程与设计》2011,32(11):3869-3872,3876
针对蜂群算法收敛速度缓慢、容易出现早熟的问题,提出一种改进的蜂群算法(IABC)。IABC在跟随阶段食物源更新中根据邻域个体食物源质量调整信息共享程度,并且随着搜索进程减弱当前食物源的影响、增强邻域信息共享强度,使蜂群在搜索初期快速收敛到最优食物源所在区域、在搜索后期提高全局收敛性能。函数测试结果表明,IABC有效地提高了ABC的收敛速度和优化精度,特别适合复杂函数的优化问题。  相似文献   

12.
针对标准人工蜂群算法存在易陷入局部最优、收敛速度慢等缺陷,提出一种基于多策略融合的改进人工蜂群算法。为了避免陷入局部最优,引入可调压排序选择策略,以保证种群的多样性;同时,通过跟随蜂阶段将线性调整全局引导策略、自适应动态调整因子策略与标准人工蜂群算法的更新策略组成一个动态调整策略集,通过比较食物源的当前质量值与上次迭代质量值对动态策略进行调整,以加快算法的收敛速度。利用标准测试函数进行实验仿真,结果表明该算法不仅提高了求解精度,而且加快了收敛速度,迭代次数明显减少。  相似文献   

13.
Multi-objective optimization has been a difficult problem and a research focus in the field of science and engineering. This paper presents a novel multi-objective optimization algorithm called elite-guided multi-objective artificial bee colony (EMOABC) algorithm. In our proposal, the fast non-dominated sorting and population selection strategy are applied to measure the quality of the solution and select the better ones. The elite-guided solution generation strategy is designed to exploit the neighborhood of the existing solutions based on the guidance of the elite. Furthermore, a novel fitness calculation method is presented to calculate the selecting probability for onlookers. The proposed algorithm is validated on benchmark functions in terms of four indicators: GD, ER, SPR, and TI. The experimental results show that the proposed approach can find solutions with competitive convergence and diversity within a shorter period of time, compared with the traditional multi-objective algorithms. Consequently, it can be considered as a viable alternative to solve the multi-objective optimization problems.  相似文献   

14.
针对人工蜂群算法初始化群体分布不均匀和局部搜索能力弱的问题,本文提出了一种增强局部搜索能力的人工蜂群算法(ESABC)。首先,在种群初始化阶段采用高维洛伦兹混沌系统,得到遍历性好、有规律的初始群体,避免了随机初始化的盲目性。然后,采用基于对数函数的适应度评价方式,以增大种群个体间差异,减小选择压力,避免过早收敛。最后,在微分进化算法的启发下,提出了一种新的搜索策略,采用当前种群中的最佳个体来引导下一代的更新,以提高算法的局部搜索能力。通过对12个经典测试函数的仿真实验,并与其他经典的改进人工蜂群算法对比,结果表明:本文算法具有良好的寻优性能,无论在解的精度还是收敛速度方面效果都有所提高。  相似文献   

15.
公共服务设施选址是一种复杂的空间优化问题,选址的好坏关系到公共服务设施能否发挥其最大作用。利用穷举算法难以对高维的数据问题进行求解。针对空间优化选址的特点及人工蜂群算法收敛速度慢的问题,提出了适合空间选址的邻域搜索新公式,并将交叉的思想引入到了算法中,加快了全局最优解的寻优速度。对算法的可行性和有效性进行了验证,实验表明增强型人工蜂群算法比基本的人工蜂群算法取得了较优的效果。  相似文献   

16.
One of the most well-known binary (discrete) versions of the artificial bee colony algorithm is the similarity measure based discrete artificial bee colony, which was first proposed to deal with the uncapacited facility location (UFLP) problem. The discrete artificial bee colony simply depends on measuring the similarity between the binary vectors through Jaccard coefficient. Although it is accepted as one of the simple, novel and efficient binary variant of the artificial bee colony, the applied mechanism for generating new solutions concerning to the information of similarity between the solutions only consider one similarity case i.e. it does not handle all similarity cases. To cover this issue, new solution generation mechanism of the discrete artificial bee colony is enhanced using all similarity cases through the genetically inspired components. Furthermore, the superiority of the proposed algorithm is demonstrated by comparing it with the basic discrete artificial bee colony, binary particle swarm optimization, genetic algorithm in dynamic (automatic) clustering, in which the number of clusters is determined automatically i.e. it does not need to be specified in contrast to the classical techniques. Not only evolutionary computation based algorithms, but also classical approaches such as fuzzy C-means and K-means are employed to put forward the effectiveness of the proposed approach in clustering. The obtained results indicate that the discrete artificial bee colony with the enhanced solution generator component is able to reach more valuable solutions than the other algorithms in dynamic clustering, which is strongly accepted as one of the most difficult NP-hard problem by researchers.  相似文献   

17.
针对人工蜂群算法在求解函数优化问题中存在收敛精度不高、收敛速度较慢的问题,提出了一种改进的增强寻优能力的自适应人工蜂群算法。该算法利用逻辑自映射函数产生混沌序列对雇佣蜂搜索行为进行混沌优化,并引入萤火虫算法中的自适应步长策略动态调整观察蜂的搜索行为,从而提升了算法的局部搜索能力。基于标准测试函数的仿真结果表明,改进后的人工蜂群算法在寻优精度和收敛速度上均有明显提高。  相似文献   

18.
人工蜂群算法自提出以来,受到很多学者的关注,并涌现出大量的研究文献。本文介绍了2013年以来国内外蜂群算法的研究成果,包括加快收敛、提高开采能力、提高算法性能方面的改进;针对约束优化、平行化运行、多目标寻优等多方面的研究;以及人工蜂群算法在神经网络、无线传感网、决策调度、图像信号处理等多个领域的研究现状,并指出人工蜂群算法有待进一步解决的问题及未来的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号