首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
魏方圆  黄德才 《计算机科学》2017,44(Z11):442-447
不确定性数据聚类方法的研究日益受到广泛关注,其中UIDK-means算法与U-PAM算法继承了基于划分算法无法识别任意形状簇和对噪声点敏感的缺陷。FDBSCAN算法事先假定不确定性数据的概率分布函数或概率密度函数是已知的,然而这些信息在实际应用中往往难以获取。针对上述算法的不足,提出一种基于区间数的多维不确定性数据聚类UID-DBSCAN算法。该算法利用区间数结合数据的统计信息合理地表示不确定性数据,采用低计算复杂度的区间数距离函数衡量不确定性数据对象间的相似度,首次提出区间数的密度、密度可达与密度相连等概念,并将其用于扩展簇中,同时结合数据集的统计特征自适应地选取算法的密度参数来实现自动聚类。实验结果表明,UID-DBSCAN算法能够有效识别噪声,处理任意形状簇,具有较高的聚类精度和较低的计算复杂度。  相似文献   

2.
王骏  黄德才 《计算机科学》2016,43(Z11):436-442
摘要位置不确定性数据的聚类是一个新的不确定性数据聚类问题。其聚类方法主要包括获取对象的概率密度函数,通过积分计算对象间的期望距离来进行聚类分析和以区间数表示对象,通过区间数的系列运算来进行聚类分析这两大类。前者存在概率密度函数获取困难、计算复杂、实用性不强的缺陷;后者在区间数转化为实数过程中,忽略了区间数变化范围对聚类效果的影响,其聚类质量不佳。鉴于此,提出一种基于联系数的不确定对象聚类新算法UCNK-Means。该算法用联系数巧妙地表示不确定性对象,并专门定义了对象间的联系距离,运用联系数态势值比较联系距离大小,克服了现有算法的不足。仿真实验表明,UCNK-Means具有聚类精度高、计算复杂度低、实用性强的特点。  相似文献   

3.
针对大部分聚类算法无法高效地发现任意形状及不同密度的簇的问题,提出了一种高效的基于距离关联性动态模型的聚类改进算法。首先,为提高聚类效率,使用层次聚类算法对数据集进行初始聚类,并剔除样本点含量过低的簇;其次,为发现任意形状及不同密度的簇,以初始聚类结果的簇的质心作为代表点,利用距离关联性动态模型进行聚类,并利用层次聚类的树状结构进行有效的剪枝计算;最后,检验算法的有效性。实验采用Chameleon数据集进行测试,结果表明,该算法能够有效识别任意形状及不同密度的簇,且与同类算法相比,时间效率有显著的提高。  相似文献   

4.
以网格化数据集来减少聚类过程中的计算复杂度,提出一种基于密度和网格的簇心可确定聚类算法.首先网格化数据集空间,以落在单位网格对象里的数据点数表示该网格对象的密度值,以该网格到更高密度网格对象的最近距离作为该网格的距离值;然后根据簇心网格对象同时拥有较高的密度和较大的距离值的特征,确定簇心网格对象,再通过一种基于密度的划分方式完成聚类;最后,在多个数据集上对所提出算法与一些现有聚类算法进行聚类准确性与执行时间的对比实验,验证了所提出算法具有较高的聚类准确性和较快的执行速度.  相似文献   

5.
面向复杂簇的聚类算法研究与实现   总被引:2,自引:0,他引:2  
有效聚类各种复杂的数据对象簇是聚类算法应用干事务对象划分、图像分割、机器学习等方面需要解决的关键技术.在分析与研究现有聚类算法的基础上,提出一种基于密度和自适应密度可达的改进算法.实验证明,该算法能够有效聚类任意分布形状、不同密度、不同尺度的簇;同时,算法的计算复杂度与传统基于密度的聚类算法相比有明显的降低.  相似文献   

6.
聚类是数据挖掘中的一项重要课题.在大型数据集中有效地发现具有任意形状、密度和尺度的簇结构是目前聚类算法研究中的一个开放性的问题.基于图形轮廓的思想,提出了一种快速的聚类算法PROFCLUS,使用数据点在图形空间分布形成的图形进行聚类,可以描述和发现任意类型的簇结构;聚类过程只扫描一遍数据集,通过渐进地构造图形映像的轮廓,使用少量的轮廓点信息进行增量的聚类,其时间复杂度接近于线性.实验验证表明,PROFCLUS可以对簇密度差异较大的数据进行有效聚类和噪声数据点识别;同时,与其他基于密度的算法相比,PROFCLUS大幅度提高了聚类效率.  相似文献   

7.
基于密度复杂簇聚类算法研究与实现   总被引:1,自引:2,他引:1       下载免费PDF全文
聚类算法在模式识别、数据分析、图像处理、以及市场研究的应用中,需要解决的关键技术是如何有效地聚类各种复杂的数据对象簇。在分析与研究现有聚类算法的基础上,提出了一种基于密度和自适应密度可达的改进算法。实验证明,该算法能够有效聚类任意分布形状、不同密度、不同尺度的簇;同时,算法的计算复杂度与传统基于密度的聚类算法相比有明显的降低。  相似文献   

8.
网格密度峰值聚类在兼顾密度峰值聚类算法可识别任意形状类簇的基础上,通过数据集的网格化简化整体计算量,成为当前备受关注的聚类方法.针对大规模数据,如何进一步区分稠密与稀疏网格,减少网格密度峰值聚类中参与计算的非空网格代表点的数量是解决“网格灾难”的关键.结合以网格密度为变量的概率密度分布呈现出类Zipf分布的特点,提出一种基于Zipf分布的网格密度峰值聚类算法.首先计算所有非空网格的密度并映射为Zipf分布,根据对应的Zipf分布筛选出稠密中心网格和稀疏边缘网格;然后仅对稠密中心网格进行密度峰值聚类,在自适应确定潜在聚类中心的同时减少欧氏距离的计算量,降低算法复杂度;最后通过对稀疏边缘网格的处理,进一步优化类簇边界并提高聚类精度.人工数据集和UCI数据集下的实验结果表明,所提出算法对大规模、类簇交叉数据的聚类具有明显优势,能够在保证聚类精度的同时降低时间复杂度.  相似文献   

9.
密度聚类是数据挖掘和机器学习中最常用的分析方法之一,无须预先指定聚类数目就能够发现非球形聚类簇,但存在无法识别不同密度的相邻聚类簇等问题。采用逆近邻和影响空间的思想,提出一种密度聚类分析算法。利用欧氏距离计算数据对象的K近邻与逆近邻,依据逆近邻识别其核心对象,并确定其核心对象的影响空间;利用逆近邻和影响空间,重新定义密度聚类簇扩展条件,并通过广度优先遍历搜索核心对象的影响空间,形成密度聚类簇,有效解决了无法区分不同密度相邻聚类簇等不足,提高了密度聚类分析效果和效率。基于UCI和人工数据集实验验证了该算法的有效性。  相似文献   

10.
周世波  徐维祥 《控制与决策》2018,33(11):1921-1930
聚类是数据挖掘领域的一个重要研究方向,针对复杂数据集中存在的簇间密度不均匀、聚类形态多样、聚类中心的识别等问题,引入样本点k近邻信息计算样本点的相对密度,借鉴快速搜索和发现密度峰值聚类(CFSFDP)算法的簇中心点识别方法,提出一种基于相对密度和决策图的聚类算法,实现对任意分布形态数据集聚类中心快速、准确地识别和有效聚类.在7类典型测试数据集上的实验结果表明,所提出的聚类算法具有较好的适用性,与经典的DBSCAN算法和CFSFDP等算法相比,在没有显著提高时间复杂度的基础上,聚类效果更好,对不同类型数据集的适应性也更广.  相似文献   

11.
12.
为了有效地发现数据聚簇,尤其是任意形状的聚簇,近年来提出了许多基于密度的聚类算法,如DBSCAN.OPTICS,DENCLUE,CLIQUE等.提出了一个新的基于密度的聚类算法CODU(clustering by ordering dense unit),基本思想是对单位子空间按密度排序,对每一个子空间,如果其密度大于周围邻居的密度则形成一个新的聚簇.由于子空间的数目远小于数据对象的数目,因此算法效率较高.同时,提出了一个新的数据可视化方法,将数据对象看做刺激光谱映射到三维空间,使聚类的结果清晰地展示出来.  相似文献   

13.
传统DBSCAN算法对密度分布不均匀的不平衡数据集的聚类效果并不理想,同时传统算法的聚类结果对邻域半径(Eps)以及核心点阈值(MinPts)敏感.针对以上问题,改进了传统算法,提出了一种基于最小生成树的密度聚类算法(MST-DBSCAN).由于对象之间的距离对聚类结果影响较大,为了更好地表示对象之间的距离特性,首先使...  相似文献   

14.
本论文在对各种算法深入分析的基础上,尤其在对基于密度的聚类算法he基于层次的聚类算法深入研究的基础上,提出了一种全新的基于密度和层次的快速聚类算法。该算法保持了基于密度聚类算法发现任意形状簇的优点,而且具有近似线性的时间复杂性,因此该算法适合对大规模数据的挖掘。理论分析和实验结果也证明了基于密度和层次的聚类算法具有处理任意形状簇的聚类、对噪音数据不敏感的特点,并且其执行效率明显高于传统的DBSCAN算法。  相似文献   

15.
粗糙K-Means及其衍生算法在处理边界区域不确定信息时,其边界区域中的数据对象因与各类簇中心点的距离相差较小,导致难以依据距离、密度对数据点进行区分判断.提出一种新的粗糙K-Means算法,在对数据进行划分时,综合数据对象的局部密度与邻域归属信息来衡量数据点与类簇的相似性,边界数据与类簇之间的关系由其局部的空间分布所...  相似文献   

16.
Clustering is a useful data mining technique which groups data points such that the points within a single group have similar characteristics, while the points in different groups are dissimilar. Density-based clustering algorithms such as DBSCAN and OPTICS are one kind of widely used clustering algorithms. As there is an increasing trend of applications to deal with vast amounts of data, clustering such big data is a challenging problem. Recently, parallelizing clustering algorithms on a large cluster of commodity machines using the MapReduce framework have received a lot of attention.In this paper, we first propose the new density-based clustering algorithm, called DBCURE, which is robust to find clusters with varying densities and suitable for parallelizing the algorithm with MapReduce. We next develop DBCURE-MR, which is a parallelized DBCURE using MapReduce. While traditional density-based algorithms find each cluster one by one, our DBCURE-MR finds several clusters together in parallel. We prove that both DBCURE and DBCURE-MR find the clusters correctly based on the definition of density-based clusters. Our experimental results with various data sets confirm that DBCURE-MR finds clusters efficiently without being sensitive to the clusters with varying densities and scales up well with the MapReduce framework.  相似文献   

17.
目前常见的轨迹聚类大多基于OPTICS、DBSCAN和K-means等算法,但这些聚类方法的时间复杂度随着轨迹数量的增加会大幅上升。针对该问题,提出一种基于密度核心的轨迹聚类算法。通过引入密度核心的概念,设计轨迹密度计算函数以获取聚类簇的致密核心轨迹,同时利用出租车载客轨迹自身的方向和速度等属性提取轨迹特征点,减少轨迹数据量。在此基础上,根据聚类簇中致密核心轨迹与参与聚类轨迹的相似度距离判断轨迹的匹配程度,进而聚合相似轨迹,并将聚类结果储存在聚类节点中。实验结果表明,与TRACLUS和OPTICS聚类算法相比,该算法能够得到更准确的聚类效果,并且时间效率更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号