首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
自校正对角阵加权信息融合Kalman预报器   总被引:6,自引:0,他引:6  
For the multisensor systems with unknown noise statistics, using the modern time series analysis method, based on on-line identification of the moving average (MA) innovation models, and based on the solution of the matrix equations for correlation function, estimators of the noise variances are obtained, and under the linear minimum variance optimal information fusion criterion weighted by diagonal matrices, a self-tuning information fusion Kalman predictor is presented, which realizes the self-tuning decoupled fusion Kalman predictors for the state components. Based on the dynamic error system, a new convergence analysis method is presented for self-tuning fuser. A new concept of convergence in a realization is presented, which is weaker than the convergence with probability one. It is strictly proved that if the parameter estimation of the MA innovation models is consistent, then the self-tuning fusion Kalman predictor will converge to the optimal fusion Kalman predictor in a realization, or with probability one, so that it has asymptotic optimality. It can reduce the computational burden, and is suitable for real time applications. A simulation example for a target tracking system shows its effectiveness.  相似文献   

3.
对于带未知噪声统计的多传感器系统,应用现代时间序列分析方法,基于滑动平均(MA)新息模型的在线辨识和相关函数矩阵方程的解,得到了噪声方差估值器,且在按对角阵加权线性最小方差最优信息融合准则下,提出了自校正信息融合Kalman预报器.它实现了状态分量的自校正解耦融合Kalman预报器.基于动态误差系统,提出了自校正融合器的一种新的收敛性分析方法.提出了按实现收敛新概念,它比以概率1收敛弱.严格证明了:假如MA新息模型参数估计是一致的,则自校正融合Kalman预报器将按实现或按概率1收敛到最优融合Kalman预报器,因而它具有渐近最优性.它可减小计算负担,且便于实时应用. 一个3传感器跟踪系统的仿真例子证明了其有效性.  相似文献   

4.
带有色观测噪声的广义系统Kalman滤波器   总被引:1,自引:0,他引:1  
陶贵丽  刘文强  于海英 《计算机仿真》2010,27(3):106-110,205
对于带自回归滑动平均(ARMA)有色观测噪声的多传感器为广义离散随机线性系统,应用奇异值分解,将其变换为等价的两个降阶多传感器子系统,提出了广义系统多传感器信息融合状态滤波问题。为了提高精度,采用Kalman滤波方法,在线性最小方差按块对角阵最优加权融合准则下,给出了按矩阵加权解耦的分布式Kalman滤波器,可减少计算负担和改善局部滤波精度。为了计算最优加权,提出了局部滤波误差协方差阵的计算公式。一个Monte Carlo仿真例子说明了方法的有效性。  相似文献   

5.
For multisensor systems with unknown parameters and noise variances, three self-tuning measurement fusion Kalman predictors based on the information matrix equation are presented by substituting the online estimators of unknown parameters and noise variances into the optimal measurement fusion steady-state Kalman predictors. By the dynamic variance error system analysis method, the convergence of the self-tuning information matrix equation is proved. Further, it is proved by the dynamic error system analysis method that the proposed self-tuning measurement fusion Kalman predictors converge to the optimal measurement fusion steady-state Kalman predictors in a realisation, so they have asymptotical global optimality. Compared with the centralised measurement fusion Kalman predictors based on the Riccati equation, they can significantly reduce the computational burden. A simulation example applied to signal processing shows their effectiveness.  相似文献   

6.
对于带未知噪声方差的多传感器系统,应用加权最小二乘(WLS)法得到了一个加权融合观测方程,且它与状态方程构成一个等价的观测融合系统.应用现代时间序列分析方法,基于观测融合系统的滑动平均(MA)新息模型参数的在线辨识,可在线估计未知噪声方差,进而提出了一种加权观测融合自校正Kalman估值器,可统一处理自校正融合滤波、预报和平滑问题,并用动态误差系统分析方法证明了它的收敛性,即若MA新息模型参数估计是一致的,则它按实现或按概率1收敛到全局最优加权观测融合Kalman估值器,因而具有渐近全局最优性.一个带3传感器跟踪系统的仿真例子说明了其有效性.  相似文献   

7.
多传感器组合的移动车载数据采集系统研究   总被引:2,自引:0,他引:2  
多传感器数据融合作为一门新兴前沿技术,已广泛应用于许多研究领域。三维信息快速采集是真实建模与三维虚拟现实的关键。提出了一种基于多传感器融合的车载移动式三维数据快速采集系统,集成了激光扫描仪、线/面阵CCD相机及GPS与IMU等多种传感器,以完成城市路面街道和建(构)筑物的三维数据自动采集。重点探讨了定位定姿方案设计及其实现,将GPS和IMU数据通过卡尔曼(Kalm an)滤波进行融合,可推测出整个系统及各传感器的位置和最佳姿态估计,以快速获取城市目标的地理坐标和三维建模信息,重建城市路面街道的三维真实场景。  相似文献   

8.
Shu-Li Sun   《Automatica》2005,41(12):2153-2159
Based on the optimal fusion criterion in the linear minimum variance sense, a distributed optimal fusion fixed-lag Kalman smoother with a three-layer fusion structure is given for the discrete time-varying linear stochastic control systems with multiple sensors and correlated noises. Its components are estimated by scalar weighting fusion, respectively. It only requires in parallel a series of computations of the weighted scalars, and avoids the computations of the weighted matrices, so that the computational burden can obviously be reduced. Further, the steady-state fusion smoother is also given for the discrete time-invariant linear stochastic control systems. The scalar weights can be obtained by fusing once after all local estimations reach steady state. It can reduce the online computational burden. Also, the computation formulas of smoothing error cross-covariance matrices are given. Two simulation examples show the performance.  相似文献   

9.
对于带未知模型参数和噪声方差的多传感器系统,基于分量按标量加权最优融合准则,提出了自校正解耦融合Kalman滤波器,并应用动态误差系统分析(Dynamic error system analysis,DESA)方法证明了它的收敛性.作为在信号处理中的应用,对带有色和白色观测噪声的多传感器多维自回归(Autoregressive,AR)信号,分别提出了AR信号模型参数估计的多维和多重偏差补偿递推最小二乘(Bias compensated recursive least-squares,BCRLS)算法,证明了两种算法的等价性,并且用DESA方法证明了它们的收敛性.在此基础上提出了AR信号的自校正融合Kalman滤波器,它具有渐近最优性.仿真例子说明了其有效性.  相似文献   

10.
Multi-sensor optimal information fusion Kalman filter   总被引:3,自引:0,他引:3  
This paper presents a new multi-sensor optimal information fusion criterion weighted by matrices in the linear minimum variance sense, it is equivalent to the maximum likelihood fusion criterion under the assumption of normal distribution. Based on this optimal fusion criterion, a general multi-sensor optimal information fusion decentralized Kalman filter with a two-layer fusion structure is given for discrete time linear stochastic control systems with multiple sensors and correlated noises. The first fusion layer has a netted parallel structure to determine the cross covariance between every pair of faultless sensors at each time step. The second fusion layer is the fusion center that determines the optimal fusion matrix weights and obtains the optimal fusion filter. Comparing it with the centralized filter, the result shows that the computational burden is reduced, and the precision of the fusion filter is lower than that of the centralized filter when all sensors are faultless, but the fusion filter has fault tolerance and robustness properties when some sensors are faulty. Further, the precision of the fusion filter is higher than that of each local filter. Applying it to a radar tracking system with three sensors demonstrates its effectiveness.  相似文献   

11.
在单个传感器的状态估计系统中,标准的增量卡尔曼滤波方法可以有效消除量测系统误差。对于多传感器情况,标准算法失效。针对该问题,提出了多传感器集中式增量卡尔曼滤波融合算法,即:增量卡尔曼滤波的扩维融合算法和增量卡尔曼滤波的序贯融合算法。在标准增量卡尔曼滤波算法的基础上,结合扩维融合和序贯融合的思想来实现多传感器数据的融合。实验结果表明,当存在量测系统误差时,提出的集中式融合算法与传统的集中式融合算法相比,提高了滤波精度,并且能够成功地消除量测系统误差。  相似文献   

12.
邓自立  刘玉梅 《控制与决策》1999,14(1):25-29,60
应用现代时间序列分析方法,基于ARMA新息模型和白噪声估值器,提出了稳态Kalman滤波、平滑、预报的一种统一格式。给出了稳态Kalman估值器增益的两种新算法,可避免解Riccati方程;提出了稳态Kalman估值器关于新息初值渐近稳定性的新概念,并给出了保证这种渐近稳定性的滤波初值选取公式。仿真例子说明了所提出结果的有效性。  相似文献   

13.
Based on the optimal fusion algorithm weighted by scalars in the linear minimum variance sense, a distributed optimal fusion reduced-order Kalman filter with scalar weights is presented for discrete-time stochastic singular systems with multiple sensors and correlated noises. It has higher accuracy than any local filter does. Compared with the distributed fusion filter weighted by matrices, it has lower accuracy but has reduced computational burden. Computation formula of cross-covariance matrix of the filtering errors between any two sensors is given. An example with three sensors shows the effectiveness.  相似文献   

14.
对于带未知有色观测噪声的多传感器线性离散定常随机系统, 未知模型参数和噪声方差的一致的融合估值器用递推增广最小二乘法(RELS)和求解相关函数方程得到. 将这些估值器代入到最优解耦融合Kalman滤波器中, 得出了自校正解耦融合Kalman滤波器, 并用动态方差误差系统分析(DVESA)和动态误差分析(DESA)方法证明了它收敛于最优解耦融合Kalman滤波器, 因而具有渐近最优性. 一个带3传感器跟踪系统的仿真例子说明了其有效性.  相似文献   

15.
研究带自回归滑动平均(ARMA)有色观测噪声的多传感器广义离散随机线性系统,根据Kalman滤波方法和白噪声估计理论,在线性最小方差信息融合准则下,应用奇异值分解和增广状态空间模型,为了提高融合器的精度,提出了按矩阵加权降阶稳态广义Kalman融合器,可统一处理稳态滤波、平滑和预报问题,可减少计算负担和改善局部估计精度。并提出最优加权系数的局部估计误差方差和协方差阵的计算公式。用一个Monte Carlo数值仿真实例说明了所提方法的有效性。  相似文献   

16.
针对我国航天测量事后数据处理的现状,提出了一种基于Kalman滤波的数据处理多尺度融合算法;该算法以建立的系统动态模型方程为基础,将多台雷达的测量数据分别在不同尺度上逐次分解,然后在同一尺度上对所有雷达数据进行系统融合处理,从而提高测量数据的处理精度;用该算法处理某次卫星发射任务的理论弹道,计算结果表明:该算法处理的效果明显优于单台雷达直接进行Kal-man滤波处理的效果,并且融合尺度越小,处理精度改善的效果越明显;该算法与α-β-γ滤波算法相比,数据处理精度有较大提高。  相似文献   

17.
  总被引:1,自引:0,他引:1  
For multisensor systems, when the model parameters and the noise variances are unknown, the consistent fused estimators of the model parameters and noise variances are obtained, based on the system identification algorithm, correlation method and least squares fusion criterion. Substituting these consistent estimators into the optimal weighted measurement fusion Kalman filter, a self-tuning weighted measurement fusion Kalman filter is presented. Using the dynamic error system analysis (DESA) method, the convergence of the self-tuning weighted measurement fusion Kalman filter is proved, i.e., the self-tuning Kalman filter converges to the corresponding optimal Kalman filter in a realization. Therefore, the self-tuning weighted measurement fusion Kalman filter has asymptotic global optimality. One simulation example for a 4-sensor target tracking system verifies its effectiveness.  相似文献   

18.
对含未知噪声统计的多传感器系统,用现代时间序列分析方法,基于滑动平均(MA)新息模型的在线辨识和求解相关函数矩阵方程组,得到了噪声统计的在线估值器,进而在按矩阵加权线性最小方差最优信息融合准则下,提出了自校正信息融合Kalman平滑器,提出了一种按实现收敛性新概念,证明了自校正Kalman融合器按实现收敛于最优Kalman融合器,因而它具有渐近最优性.同单传感器自校正Kalman平滑器相比,它可提高平滑精度,一个目标跟踪系统的仿真例子说明了其有效性.  相似文献   

19.
带多层融合结构的广义系统 Kalman 融合器   总被引:2,自引:0,他引:2       下载免费PDF全文
对带多传感器的线性离散随机广义系统, 用奇异值分解将其化为两个降阶耦合子系统, 应用现代时间序列分析方法, 基于自回归滑动平均 (Autoregressive moving average, ARMA) 新息模型和白噪声估计理论, 提出了带三层融合结构的分布式稳态 Kalman 融合器, 它由两个加权融合器和两个复合融合器组成. 第一层给出子系统状态融合器, 实现了每个子系统分量解耦融合; 第二层给出变换后状态融合器, 实现了两个子系统的解耦融合; 第三层给出原始状态融合器, 它可统一处理状态融合滤波、平滑和预报问题. 为计算最优加权阵, 给出了计算局部估计误差互协方差阵公式, 证明了它的精度比每个局部估值器精度高. Monte Carlo 的仿真实例说明了其有效性.  相似文献   

20.
This paper describes the implementation of an intelligent navigation system, based on the integrated use of the global positioning system (GPS) and several inertial navigation system (INS) sensors, for autonomous underwater vehicle (AUV) applications. A simple Kalman filter (SKF) and an extended Kalman filter (EKF) are proposed to be used subsequently to fuse the data from the INS sensors and to integrate them with the GPS data. The paper highlights the use of fuzzy logic techniques to the adaptation of the initial statistical assumption of both the SKF and EKF caused by possible changes in sensor noise characteristics. This adaptive mechanism is considered to be necessary as the SKF and EKF can only maintain their stability and performance when the algorithms contain the true sensor noise characteristics. In addition, fault detection and signal recovery algorithms during the fusion process to enhance the reliability of the navigation systems are also discussed herein. The proposed algorithms are implemented to real experimental data obtained from a series of AUV trials conducted by running the low-cost Hammerhead AUV, developed by the University of Plymouth and Cranfield University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号