首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a direct adaptive fuzzy backstepping control (AFBC) for multi-input multi-output uncertain discrete-time nonlinear systems. It is assumed that the systems are described by a discrete-time state equation with uncertainties to be viewed as the modelling errors and the unknown external disturbances, and the observation of the states is taken with independent measurement noises. The proposed direct AFBC is presented as follows. The proposed direct AFBC is assumed to be the fuzzy logic system by removing the explosion of complexity problem due to repeated computation of nonlinear functions at the first stage. Second, the number of the adjustable parameters is reduced by the fuzzy inference approach based on the extended single input rule modules. Third, the simplified weighted least squares estimator is constructed by reducing the computational burden of the estimation for the unmeasurable states and the adjustable parameters. The effectiveness of the proposed direct AFBC is illustrated through the simulation experiment of a simple numerical system.  相似文献   

2.
This paper presents the design of an adaptive fuzzy sliding mode control (AFSMC) for uncertain discrete-time nonlinear dynamic systems. The dynamic systems are described by a discrete-time state equation with nonlinear uncertainties, and the uncertainties include the modelling errors and the external disturbances to be unknown but nonlinear with the bounded properties. The states are measured by the restriction of measurement sensors and the contamination with independent measurement noises. The nonlinear uncertainties are approximated by using the fuzzy IF-THEN rules based on the universal approximation theorem, and the approximation error is compensated by adding an adaptive complementary term to the proposed AFSMC. The fuzzy inference approach based on the extended single input rule modules is proposed to reduce the number of the fuzzy IF-THEN rules. The estimates for the un-measurable states and the adjustable parameters are obtained by using the weighted least squares estimator and its simplified one. It is proved that under some conditions the estimation errors will remain in the vicinity of zero as time increases, and the states are ultimately bounded subject to the proposed AFSMC. The effectiveness of the proposed method is indicated through the simulation experiment of a simple numerical system.  相似文献   

3.
This paper presents the design of an adaptive fuzzy dynamic surface control for a class of stochastic MIMO discrete-time nonlinear pure-feedback systems with full state constraints using a set of noisy measurements. The design approach is described as follows. The nonlinear uncertainty is approximated by using the fuzzy logic system at the first stage, secondly the proposed adaptive fuzzy dynamic surface control is designed based on a new saturation function for full state constraints, thirdly the number of the adjustable parameters is reduced by using the simplified extended single input rule modules, and finally the simplified weighted least squares estimator is in a simplified structure designed to take the estimates for the un-measurable states and the adjustable parameters. The simulation provides that the proposed approach is effective for the improvement of the system performance.  相似文献   

4.
An adaptive fuzzy decentralized backstepping output-feedback control approach is proposed for a class of nonlinear large-scale systems with completely unknown functions,the interconnections mismatched in control inputs,and without the measurements of the states.Fuzzy logic systems are employed to approximate the unknown nonlinear functions,and an adaptive high-gain observer is developed to estimate the unmeasured states.Using the designed high-gain observer,and combining the fuzzy adaptive control theory with backstepping approach,an adaptive fuzzy decentralized backstepping output-feedback control scheme is developed.It is proved that the proposed control approach can guarantee that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded(SUUB),and that the observer errors and the tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters.Finally,a simulation example is provided to show the eectiveness of the proposed approach.  相似文献   

5.
In this paper, an adaptive fuzzy decentralized backstepping output feedback control approach is proposed for a class of uncertain large‐scale stochastic nonlinear systems without the measurements of the states. The fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy state observer is designed for estimating the unmeasured states. Using the designed fuzzy state observer, and by combining the adaptive backstepping technique with dynamic surface control technique, an adaptive fuzzy decentralized output feedback control approach is developed. It is shown that the proposed control approach can guarantee that all the signals of the resulting closed‐loop system are semi‐globally uniformly ultimately bounded in probability, and the observer errors and the output of the system converge to a small neighborhood of the origin by choosing appropriate design parameters. A simulation example is provided to show the effectiveness of the proposed approaches. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper,a new fuzzy adaptive control approach is developed for a class of SISO uncertain pure-feedback nonlinear systems with immeasurable states.Fuzzy logic systems are utilized to approximate the unknown nonlinear functions;and the filtered signals are introduced to circumvent algebraic loop systems encountered in the implementation of the controller,and a fuzzy state adaptive observer is designed to estimate the immeasurable states.By combining the adaptive backstepping technique,an adaptive fuzzy output feedback control scheme is developed.It is proven that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are semi-globally uniformly ultimately bounded(SGUUB),and the observer and tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters.Simulation studies are included to illustrate the efectiveness of the proposed approach.  相似文献   

7.
This paper is concerned with the design of an adaptive fuzzy dynamic surface control for uncertain nonlinear pure-feedback systems with input and state constraints using a set of noisy measurements. The design approach is described as follows. The nonlinear uncertainties are approximated by using the fuzzy logic systems at the first stage, secondly the adaptive fuzzy dynamic surface control is introduced to remove the problem of the explosion of complexity for the derivation of the adaptive fuzzy backstepping control, thirdly a new saturation function for state constraints is proposed to design the controllers based on the Lyapunov function, fourthly the number of the adjustable parameters is reduced by using the simplified extended single input rule modules, and finally the weighted least squares estimator to take the estimates for the un-measurable states and the adjustable parameters is in a simplified structure designed. The proposed approach provides effective system performance in the simulation experiment.  相似文献   

8.
In this paper, an adaptive fuzzy output feedback control approach based on backstepping design is proposed for a class of SISO strict feedback nonlinear systems with unmeasured states, nonlinear uncertainties, unmodeled dynamics, and dynamical disturbances. Fuzzy logic systems are employed to approximate the nonlinear uncertainties, and an adaptive fuzzy state observer is designed for the states estimation. By combining backstepping technique with the fuzzy adaptive control approach, a stable adaptive fuzzy...  相似文献   

9.
In this paper, a new fuzzy adaptive control approach is developed for a class of SISO strict-feedback nonlinear systems, in which the nonlinear functions are unknown and the states are not available for feedback. By fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy adaptive high-gain observer is designed to estimate the unmeasured states. Under the framework of the backstepping design, fuzzy adaptive output feedback control is constructed recursively. It is shown that the proposed fuzzy adaptive control approach guarantees the semi-global boundedness property for all the signals of the resulting closed-loop system. Simulation results are included to illustrate the effectiveness of the proposed techniques.  相似文献   

10.
In this paper, an adaptive fuzzy decentralized output feedback control approach is presented for a class of uncertain nonlinear pure‐feedback large‐scale systems with immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, and a fuzzy state observer is designed to estimate the immeasurable states. On the basis of the adaptive backstepping recursive design technique, an adaptive fuzzy decentralized output feedback is developed. It is proved that the proposed control approach can guarantee that all the signals of the resulting closed‐loop system are semiglobally uniformly ultimately bounded (SUUB), and that the observer and tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters. Simulation studies are included to illustrate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, an adaptive fuzzy output feedback control approach is developed for a class of SISO nonlinear uncertain systems with unmeasured states and unknown virtual control coefficients. The fuzzy logic systems are used to model the uncertain nonlinear systems. The MT-filters and the state observer are designed to estimate the unmeasured states. Using backstepping design principle and combining the Nussbaum gain functions, an adaptive fuzzy output feedback control scheme is developed. It is proved that the proposed adaptive fuzzy control approach can guarantee all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of origin. A simulation is included to illustrate the effectiveness of the proposed approach.  相似文献   

12.
This article develops an adaptive fuzzy control method for accommodating actuator faults in a class of unknown nonlinear systems with unmeasured states. The considered faults are modelled as both loss of effectiveness and lock-in-place (stuck at unknown place). With the help of fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy adaptive observer is developed for estimating the unmeasured states. Combining the backstepping technique with the nonlinear tolerant-fault control theory, a novel adaptive fuzzy faults-tolerant control approach is constructed. It is proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are bounded and the tracking error between the system output and the reference signal converges to a small neighbourhood of zero by appropriate choice of the design parameters. Simulation results are provided to show the effectiveness of the control approach.  相似文献   

13.
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and single-output (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.  相似文献   

14.
Adaptive fuzzy dynamic surface control for uncertain nonlinear systems   总被引:1,自引:1,他引:0  
In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globally uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.  相似文献   

15.
This paper is concerned with the problem of adaptive fuzzy decentralised output-feedback control for a class of uncertain stochastic nonlinear pure-feedback large-scale systems with completely unknown functions, the mismatched interconnections and without requiring the states being available for controller design. With the help of fuzzy logic systems approximating the unknown nonlinear functions, a fuzzy state observer is designed estimating the unmeasured states. Therefore, the nonlinear filtered signals are incorporated into the backstepping recursive design, and an adaptive fuzzy decentralised output-feedback control scheme is developed. It is proved that the filter system converges to a small neighbourhood of the origin based on appropriate choice of the design parameters. Simulation studies are included illustrating the effectiveness of the proposed approach.  相似文献   

16.
In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.  相似文献   

17.
动态不确定非线性系统直接自适应模糊backstepping控制   总被引:3,自引:0,他引:3  
对一类单输入单输出动态不确定非线性系统,提出一种直接自适应模糊backstepping和小增益相结合的控制方法.设计中,首先用模糊逻辑系统逼近虚拟控制器:其次把自适应模糊控制和backstepping控制设计技术相结合.给出了直接自适应模糊控制设计方法.最后基于Lyapunov函数和小增益方法证明了整个闭环系统的稳定性.仿真实例进一步验证了所提方法的有效性.  相似文献   

18.
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach.  相似文献   

19.
A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.  相似文献   

20.
In this paper, a direct adaptive fuzzy robust control approach is proposed for single input and single output (SISO) strict-feedback nonlinear systems with nonlinear uncertainties, unmodeled dynamics and dynamical disturbances. No prior knowledge of the boundary of the nonlinear uncertainties is required. Fuzzy logic systems are used to approximate the intermediate stabilizing functions, and a stable direct adaptive fuzzy backstepping robust control approach is developed by combining the backstepping technique with the fuzzy adaptive control theory. The stability of the closed-loop system and the convergence of the system output are proved based on the small-gain theorem. Simulation studies are conducted to illustrate the effectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号