首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A methodology is presented for the dynamic scheduling of flexible manufacturing systems (FMSs). A two-level control hierarchy is suggested. The higher level is used for determining a dominant decision criterion and relevant scheduling rules, based on an analysis of the actual shop status. The lower level uses simulation for determining the best scheduling policy to be selected. Simulation is used to evaluate different control options, and once a control decision is made, it is operated in real time to serve as the FMS controller. The suggested scheduling and control scheme is being developed, implemented and tested in a physical computer integrated manufacturing (CIM)/FMS environment at the CIM and Robotics Lab of the Faculty of Industrial Engineering and Management, Technion. This will serve as a test-bed to study the performance of the FMS under different scheduling rules and control options, and to recommend the best combination of control policies and parameters for specific system conditions and global production objectives.  相似文献   

2.
An important element in the successful operation of flexible manufacturing systems (FMS) is the management of the tooling component. This paper reports on one aspect of tool management for FMS operations. Four tool allocation and scheduling strategies are compared in the presence of three part selection rules through a simulation study of a five-machine FMS with an automated tool handling system. The tool allocation strategies are similar to those used in industry while the part selection rules are synthesized from the literature on FMS scheduling under tooling constraints. The use of different tooling strategies produces significantly different outcomes in FMS performance.  相似文献   

3.
This study examines the effects of scheduling rules on the performance of flexible manufacturing systems (FMSs). Several machine and AGV scheduling rules are tested against the mean flowtime criterion. In general, scheduling rules are widely used in practice ranging from direct applications as a stand-alone scheduling scheme to indirect application as a part of complicated scheduling systems. In this paper, we compare the rules under various experimental conditions by using an FMS simulation model. Our objective is to measure sensitivity of the rules to changes in processing time distributions, various levels of breakdown rates, and types of AGV priority schemes. A comprehensive bibliography is also presented in the paper.  相似文献   

4.
《国际生产研究杂志》2012,50(21):6111-6121
This study deals with controlling flexible manufacturing systems (FMS) operating in volatile production environments. Most studies that address this issue use some sort of adaptive scheduling that enables the FMS to cope with the randomness and variability efficiently. The methods presented in the literature are usually based on heuristics and use simple dispatching rules. They do not consider changing the decision criteria dynamically as the system conditions change. In contrast to previous studies, the present study focuses on developing a control mechanism for dynamic scheduling that is based on incremental optimisation. This means that each time a scheduling decision is made, the local optimisation problem is solved such that the next jobs to be processed on machines are selected. The objective function (dominant decision criterion) for this optimisation problem is selected dynamically based on production order requirements, actual shop-floor status and system priorities. The proposed multi-criteria optimisation-based dynamic scheduling methodology was evaluated and compared with some known scheduling rules/policies. The results obtained demonstrate the superiority of the suggested methodology as well as its capability to cope with a multi-criteria environment.  相似文献   

5.
This paper deals with the concurrent solution of the loading and scheduling problems in a flexible manufacturing system ( FMS) environment. It is assumed that the FMS environment has production planned periodically and each job in the system has a number of operations to be processed on flexible machines. A heuristic approach using a constructive scheduling method is developed to solve the FMS loading and scheduling problems concurrently. The computational results are compared to an existing procedure that considers a hierarchical approach with a similar problem environment. The comparison study shows a significant improvement over the existing hierarchical procedure. This experiment indicates that a concurrent solution approach can solve the FMS loading and scheduling problems very effectively.  相似文献   

6.
This paper describes a study which explores human decision-making abilities in scheduling and dispatching of a flexible manufacturing system (FMS) An experiment is described, using an FMS, in which subjects make scheduling and dispatching decisions using a real-time interactive computer-simulation based system. The experimental results demonstrate that human decision-making is superior to general dispatching rules. An explanation of these results and an analysis of subjects' behaviour is presented in the light of information obtained from verbal protocol data  相似文献   

7.
基于规则对象Petri网的柔性制造系统建模   总被引:5,自引:0,他引:5  
针对FMS建模中存在的问题,通过分析FMS的组成和活动特点,提出了规则对象Petri网的建模方法。该方法集中了Petri网和面向对象技术的优点,并融系统决策规则子模型中。利用规则对象Petri网,建立了FMS的资源对象模型、动态行为模型和调度决策模型,为设计、分析和调度控制提供了有效的工具。  相似文献   

8.
Flexible manufacturing systems (FMSs) are allowing firms to take advantage of diversified, low volume production of products with short life-cycles. The flexibility provided by an FMS improves the ability of a system to respond to change. Several types of manufacturing flexibility (M F) have been identified in the literature. Ideally, it is desirable to provide an FMS with all types of flexibility. However, there is a general consensus on the discordant nature of some of the flexibilities. This makes it imperative for management to recognize which flexibilities it deems critical to the manufacturing strategy of the firm. This allows the management to trade-off some of the less important flexibilities for the more important ones, as the need arises.

This study is an attempt toward an empirical examination of the flexibility trade-offs in an FMS. By using computer simulation, we study the flexibility tradeoffs in the stochastic environment of a random FMS. Various configurations of the FMS are simulated under the influence of a variety of loading and dispatching strategies. The results show that there is a trade-off among the various flexibility types under most circumstances. However, some scenarios illustrate that an appropriate combination of the variables like scheduling environment, product variety, and system configuration, can be effective in containing these trade-offs. In other cases, it is seen that the FMS can accommodate more than one flexibility type simultaneously.  相似文献   

9.
This paper reports the results of an experimental investigation of scheduling decision rules for a dedicated flexible manufacturing system. A simulation model of an existing flexible manufacturing system (FMS) comprised of 16 computer numerical controlled machines (CNC) was constructed using actual operation routings and machining times to evaluate the performance of various part loading and routing procedures. The results indicate that FMS performance is significantly affected by the choice of heuristic parts scheduling rules.  相似文献   

10.
This paper focuses on a simulation-based experimental study of the effects of routing flexibility, sequencing flexibility, and part sequencing rules on the performance of a typical FMS. Three routing flexibility levels, five sequencing flexibility levels, and four scheduling rules for part sequencing decision are considered for detailed investigation. The system work load characterised by the mean interarrival time of parts has been set at different levels. The performance of the FMS is evaluated using various measures related to flow time and tardiness of parts. The simulation results are subjected to statistical analysis. Multiple regression-based metamodels have been developed using the simulation results. The analyses of results reveal that deterioration in system performance can be minimised substantially by incorporating either routing flexibility or sequencing flexibility or both. However, the benefits of either of these flexibilities diminish at higher flexibility levels. When flexibility exists, part sequencing rules such as the earliest due date and earliest operation due date provide a better performance for all the measures.  相似文献   

11.
A performance-based dynamic scheduling model for random flexible manufacturing systems (FMSs) is presented. The model is built on the mathematical background of supervisory control theory of discrete event systems. The dynamic FMS scheduling is based on the optimization of desired performance measures. A control theory-based system representation is coupled with a goal programming-based multi-criteria dynamic scheduling algorithm. An effectiveness function, representing a performance index, is formulated to enumerate the possible outputs of future schedules. Short-term job scheduling and dispatching decisions are made based on the values obtained by optimizing the effectiveness function. Preventive actions are taken to reduce the difference between actual and desired target values. To analyse the real-time performance of the proposed model, a software environment that included various Visual Basic Application® modules, simulation package Arena®, and Microsoft Access® database was developed. The experimentation was conducted (a) to determine the optimum look-ahead horizons for the proposed model and (b) to compare the model with conventional scheduling decision rules. The results showed that the proposed model outperformed well-known priority rules for most of the common performance measures.  相似文献   

12.
It is well known that efficient scheduling of jobs is essential for improving the economics of production in manufacturing organizations. As a result, extensive research has been conducted on scheduling, especially in job shop and flow shop settings. In contrast, little research has been done on hybrid flow systems, even though they are found in many industries, including beer processing, glass container production, pertroleum refining, plastic-coated cable production, and fertilizer production. Furthermore, the few studies that have dealt with hybrid systems have been limited by the assumptions made about their operating environments. Therefore, we conducted a study that extends the previous work on hybrid systems in two significant ways: (1) it included financially oriented scheduling rules and a new, related performance measure; and (2) the new rules were compared with the existing ones in a large simulation experiment under both static and dynamic (generally encountered in practice) hybrid flow shop environments. To date such comparisons have been made only under static environments. The results show that the relative performances of the scheduling rules differ as the assumptions regarding the operating environment are changed.  相似文献   

13.
In many areas of computerization today, the capabilities of hardware systems far exceed the sophistication of software systems needed for optimum control. This research is an attempt to advance software control capabilities of flexible manufacturing systems (FMSs). To this end, an FMS controller architecture, called Celeritas, has been designed and a software system conforming to this architecture has been designed and implemented. Celeritas is a generic, data-configurable FMS controller designed using the coloured Petri nets (CP-nets) modelling paradigm augmented with decision support software to provide both FMS simulation and control. Formalisms of the CP-net paradigm provide straightforward representation of both the inherent concurrency and resource conflicts present in such a complex system. Augmentations provide user-defined routines for real-time interfaces to this information which is utilized to provide resource arbitration services among jobs competing for scarce resources and overall job scheduling.  相似文献   

14.
Due to increasing competition in the developing global economy, today’s companies are facing greater challenges than ever to employ flexible manufacturing systems (FMS) capable of dealing with unexpected events and meeting customers’ requirements. One such system is robotic flexible assembly cells (RFACs). There has been relatively little work on the scheduling of RFACs, even though overall scheduling problems of FMS have attracted significant attention. This paper presents Taguchi optimisation method in conjunction with simulation modelling in a new application for dynamic scheduling problems in RFACs, in order to minimise total tardiness and number of tardy jobs (NT). This is the first study to address these particular problems. In this study, Taguchi method has been used to reduce the minimum number of experiments required for scheduling RFACs. These experiments are based on an L9 orthogonal array with each trial implemented under different levels of scheduling factors. Four factors are considered simultaneously: sequencing rule, dispatching rule, cell utilisation and due date tightness. The experimental results are analysed using an analysis of mean to find the best combination of scheduling factors and an analysis of variance to determine the most significant factors that influence the system’s performance. The resulting analysis shows that this proposed methodology enhances the system’s scheduling policy.  相似文献   

15.
Scheduling in a flexible manufacturing system (FMS)must take into account the shorter lead-time, the multiprocessing environment, the flexibility of machine tools, and the dynamically changing states. The scheduling approach described in this paper employs a knowledge-based system to carry out the nonlinear planning method developed in artificial intelligence. The state-space process for plan-generation, by either forward- or backward-chaining, can handle scheduling requirements unique to the FMS environment. A prototype of this scheduling system has been implemented on a LISP machine and is applied to solve the scheduling problem in flexible manufacturing cells. This scheduling method is characterized by its knowledge-based organization, symbolic representation, state-space inferencing, and its ability for dynamic scheduling and plan revision. It provides a foundation for integrating intelligent planning, scheduling, and machine learning in FMSs.  相似文献   

16.
This paper presents three quasi on-line scheduling procedures for FMSs consisting of work stations, transport devices, and operators. In the scheduling, different types of decisions are taken to perform a particular operation, i.e. the selection of (a) a work station, (b) a transport device and (c) an operator. Further, (d) the scheduling sequence of the operations has to be determined. The three developed procedures differ in the way these four decision problems are solved hierarchically. Several dispatching rules (SPT, SPT.TOT, SPT/ TOT and EFTA) are available to solve the last mentioned decision problem. Limited buffer capacities in an FMS may cause deadlock in the procedures as well as in practice. The scheduling procedures involve a buffer handling method to avoid deadlock. A case study is presented to demonstrate the three procedures and to show some of its properties. Based on simulation tests, some conclusions are drawn about the performance of the scheduling procedures and the various dispatching rules.  相似文献   

17.
When a company adopts cellular manufacturing and creates a cell, one operational problem that must be addressed is how to schedule parts within the cell. Many studies have investigated scheduling rules in a cellular manufacturing environment. However, there has been little consensus on the best scheduling rule to use. To address this lack of consensus, this study evaluated the best scheduling rules from most of these studies in a flow-line cell. The impact of two environmental factors, setup to runtime ratio and number of part families, was also investigated. Out of the five best scheduling rules found, three of these had not been investigated in previous group scheduling studies. The scheduling rule that most often performed best was selecting the part family with the most waiting jobs and sequencing these jobs in shortest processing time order, a relatively simple rule. The more complex rules generally showed poorer performance.  相似文献   

18.
This paper addresses the problem of simultaneous scheduling of machines and two identical automated guided vehicles (AGVs) in a flexible manufacturing system (FMS). For solving this problem, a new meta-heuristic differential evolution (DE) algorithm is proposed. The problem consists of two interrelated problems, scheduling of machines and scheduling of AGVs. A simultaneous scheduling of these, in order to minimise the makespan will result in a FMS being able to complete all the jobs assigned to it at the earliest time possible, thus saving resources. An increase in the performance of the FMS under consideration would be expected as a result of making the scheduling of AGVs as an integral part of the overall scheduling activity. The algorithm is tested by using problems generated by various researchers and the makespan obtained by the algorithm is compared with that obtained by other researchers and analysed.  相似文献   

19.
The volatile condition of today's market is forcing the manufacturing managers to adapt the flexible manufacturing systems (FMS) to meet the challenges imposed by international competition, ever changing customer demands, rapid delivery to market and advancement in technology. There are certain enablers, which help in the implementation of FMS or in the transition process from traditional manufacturing systems to FMS. The utmost need is to analyse the behaviour of these enablers for their effective utilization in the implementation of FMS. The main objective of this paper is to understand the mutual interaction of these enablers and identify the ‘driving enablers’ (i.e. which influence the other enablers) and the ‘dependent enablers’ (i.e. which are influenced by others). In the present work, these enablers have been identified through the literature, their ranking is done by a questionnaire-based survey and interpretive structural modelling (ISM) approach has been utilized in analysing their mutual interaction. An ISM model has been prepared to identify some key enablers and their managerial implications in the implementation of FMS.  相似文献   

20.
A FMS(flexible manufacturing system) scheduling algorithm based on an evolution algorithm (EA) is developed by intensively analyzing and researching the scheduling method in this paper.Many factors related to FMS scheduling are considered sufficiently.New explanations for a common kind of the encoding model are given.The rationality of encoding model is ensured by designing a set of new encoding methods,while the simulation experiment is performed.The results show that a FMS scheduling optimum problem with multi-constraint conditions can be effectively solved by a FMS scheduling simulation model based on EA.Comparing this method with others,this algorithm has the advantage of good stability and quick convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号