首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
This paper is concerned with the H2/H control problem for stochastic linear systems with delay in state, control and external disturbance-dependent noise. A necessary and sufficient condition for the existence of a unique solution to the control problem is derived. The resulting solution is characterised by a kind of complex generalised forward–backward stochastic differential equations with stochastic delay equations as forward equations and anticipated backward stochastic differential equations as backward equations. Especially, we present the equivalent feedback solution via a new type of Riccati equations. To explain the theoretical results, we apply them to a population control problem.  相似文献   

2.
This paper studies exponential convergence index assignment of stochastic control systems from the viewpoint of backward stochastic differential equation. Like deterministic control systems, it is shown that the exact controllability of an open-loop stochastic system is equivalent to the possibility of assigning an arbitrary exponential convergence index to the solution of the closed-loop stochastic system, formed by means of suitable linear feedback of the states. As an application, a sufficient and necessary condition for the existence and uniqueness of the solution of a class of infinite horizon forward-backward stochastic differential equations is provided.  相似文献   

3.
研究线性Markov切换系统的随机Nash微分博弈问题。首先借助线性Markov切换系统随机最优控制的相关结果,得到了有限时域和无线时域Nash均衡解的存在条件等价于其相应微分(代数) Riccati方程存在解,并给出了最优解的显式形式;然后应用相应的微分博弈结果分析线性Markov切换系统的混合H2/H∞控制问题;最后通过数值算例验证了所提出方法的可行性。  相似文献   

4.
Our recent paper (Fei W, etal. Delay dependent stability of highly nonlinear hybrid stochastic systems. Automatica. 2017;82:165‐170) is the first to establish delay‐dependent criteria for highly nonlinear hybrid stochastic differential delay equations (SDDEs) (by highly nonlinear, we mean that the coefficients of the SDDEs do not have to satisfy the linear growth condition). This is an important breakthrough in the stability study as all existing delay stability criteria before could only be applied to delay equations where their coefficients are either linear or nonlinear but bounded by linear functions (namely, satisfy the linear growth condition). In this continuation, we will point out one restrictive condition imposed in our earlier paper. We will then develop our ideas and methods there to remove this restrictive condition so that our improved results cover a much wider class of hybrid SDDEs.  相似文献   

5.
In this paper, we deal with the problem of stochastic Nash differential games of Markov jump linear systems governed by Itô-type equation. Combining the stochastic stabilizability with the stochastic systems, a necessary and sufficient condition for the existence of the Nash strategy is presented by means of a set of cross-coupled stochastic algebraic Riccati equations. Moreover, the stochastic H2/H control for stochastic Markov jump linear systems is discussed as an immediate application and an illustrative example is presented.  相似文献   

6.
7.
Under a non-Lipschitz condition with the Lipschitz condition being considered as a special case and a weakened linear growth condition, the existence and uniqueness of mild solutions to stochastic neutral partial functional differential equations (SNPFDEs) is investigated. Some results in Govindan (2003, 2005) [2], [6] are generalized to cover a class of more general SNPFDEs.  相似文献   

8.
This paper discusses application of two numerical methods (central difference and predictor corrector) for the solution of differential equations with deterministic as well as stochastic inputs. The methods are applied to a second order linear differential equation representing a series RLC netowrk with step function, sinusoidal and stochastic inputs. It is shown that both methods give correct answers for the step function and sinusoidal inputs. However, the central-difference method of solution is recommended for stochastic inputs. This statement is justified by comparing the auto-correlation and cross-correlation functions of the central-difference solution (with stochastic inputs) with the corresponding theoretical values of a continuous system. It is further shown that the more common predictor-corrector methods, although suitable for solution of differential equations with regular inputs, diverge for stochastic inputs. The reason is that these methods, by the application of several point integral formulas, use a high degree of smoothing on the variable and its derivatives. Inherent in the derivation of these integral formulas is the assumption of the continuity of the variable and its derivatives, a condition which is not satisfied in problems with stochastic inputs.Note that the second order differential equation chosen here for numerical experiments can be solved by classical methods for all of the given inputs, including the probabilistic inputs. The classical methods, however, unlike the numerical solutions, can not be extended to nonlinear differential equations which frequently arise in the digital simulation of engineering problems.  相似文献   

9.
《国际计算机数学杂志》2012,89(10):2260-2275
In this paper, we first prove the strong convergence of the split-step theta methods for non-autonomous stochastic differential equations under a linear growth condition on the diffusion coefficient and a one-sided Lipschitz condition on the drift coefficient. Then, if the drift coefficient satisfies a polynomial growth condition, we further get the rate of convergence. Finally, the obtained results are supported by numerical experiments.  相似文献   

10.
《国际计算机数学杂志》2012,89(14):2955-2968
The stochastic pantograph equations (SPEs) are very special stochastic delay differential equations (SDDEs) with unbounded memory. When the numerical methods with a constant step size are applied to the pantograph equations, the most difficult problem is the limited computer memory. In this paper, we construct methods with variable step size to solve SPEs. The analysis is motivated by the example of a mean-square stable linear SPE for which the Euler–Maruyama (EM) method with variable step size fails to reproduce this behaviour for any nonzero timestep. Then we consider the Backward Euler (BE) method with variable step size and develop the fundamental numerical analysis concerning its strong convergence and mean-square linear stability. It is proved that the numerical solutions produced by the BE method with variable step size converge to the exact solution under the local Lipschitz condition and the Bounded condition. Furthermore, the order of convergence p=½ is given under the Lipschitz condition. The result of the mean-square linear stability is given. Some illustrative numerical examples are presented to demonstrate the order of strong convergence and the mean-square linear stability of the BE method.  相似文献   

11.
Neutral stochastic differential delay equations (NSDDEs) have recently been studied intensively (see e.g. [V.B. Kolmanovskii, V.R. Nosov, Stability and Periodic Modes of Control Systems with Aftereffect, Nauka, Moscow, 1981; X. Mao, Exponential stability in mean square of neutral stochastic differential functional equations, Systems Control Lett. 26 (1995) 245–251; X. Mao, Razumikhin type theorems on exponential stability of neutral stochastic functional differential equations, SIAM J. Math. Anal. 28(2) (1997) 389–401; X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing, Chichester, 1997]). More recently, Mao [Asymptotic properties of neutral stochastic differential delay equations, Stochastics and Stochastics Rep. 68 (2000) 273–295] provided with some useful criteria on the exponential stability for NSDDEs. However, the criteria there require not only the coefficients of the NSDDEs to obey the linear growth condition but also the time delay to be a constant. One of our aims in this paper is to remove these two restrictive conditions. Moreover, the key condition on the diffusion operator associated with the underlying NSDDE will take a much more general form. Our new stability criteria not only cover many highly non-linear NSDDEs with variable time delays but they can also be verified much more easily than the known criteria.  相似文献   

12.
In this paper, we investigate the almost surely asymptotic stability for the nonlinear stochastic differential delay equations with Markovian switching. Some sufficient criteria on the controllability and robust stability are also established for linear stochastic differential delay equations with Markovian switching.  相似文献   

13.
In this paper, we investigate the exponential stability of highly nonlinear hybrid neutral pantograph stochastic differential equations (NPSDEs). The aim of this paper is to establish exponential stability criteria for a class of hybrid NPSDEs without the linear growth condition. The methods of Lyapunov functions and M‐matrix are used to study exponential stability and boundedness of the hybrid NPSDEs.  相似文献   

14.
《国际计算机数学杂志》2012,89(18):2543-2561
In this paper we present the theoretical framework needed to justify the use of a kernel-based collocation method (meshfree approximation method) to estimate the solution of high-dimensional stochastic partial differential equations (SPDEs). Using an implicit time-stepping scheme, we transform stochastic parabolic equations into stochastic elliptic equations. Our main attention is concentrated on the numerical solution of the elliptic equations at each time step. The estimator of the solution of the elliptic equations is given as a linear combination of reproducing kernels derived from the differential and boundary operators of the SPDE centred at collocation points to be chosen by the user. The random expansion coefficients are computed by solving a random system of linear equations. Numerical experiments demonstrate the feasibility of the method.  相似文献   

15.
In this paper, we study a linear‐quadratic optimal control problem for mean‐field stochastic differential equations driven by a Poisson random martingale measure and a one‐dimensional Brownian motion. Firstly, the existence and uniqueness of the optimal control is obtained by the classic convex variation principle. Secondly, by the duality method, the optimality system, also called the stochastic Hamilton system which turns out to be a linear fully coupled mean‐field forward‐backward stochastic differential equation with jumps, is derived to characterize the optimal control. Thirdly, applying a decoupling technique, we establish the connection between two Riccati equations and the stochastic Hamilton system and then prove the optimal control has a state feedback representation.  相似文献   

16.
This paper is concerned with the problem of robustly stochastically exponential stability and stabilization for a class of distributed parameter systems described by uncertain linear first-order hyperbolic partial differential equations (FOHPDEs) with Markov jumping parameters, for which the manipulated input is distributed in space. Based on an integral-type stochastic Lyapunov functional (ISLF), the sufficient condition of robustly stochastically exponential stability with a given decay rate is first derived in terms of spatial differential linear matrix inequalities (SDLMIs). Then, an SDLMI approach to the design of robust stabilizing controllers via state feedback is developed from the resulting stability condition. Furthermore, using the finite difference method and the standard linear matrix inequality (LMI) optimization techniques, recursive LMI algorithms for solving the SDLMIs in the analysis and synthesis are provided. Finally, a simulation example is given to demonstrate the effectiveness of the developed design method.  相似文献   

17.
Without the linear growth condition on the drift coefficient, this article examines the existence and uniqueness of global solutions of a class of neutral stochastic differential equations with unbounded delay and their asymptotic stabilities with general decay rate. To illustrate the application of our results, this article gives a two-dimensional system as an example.  相似文献   

18.
灰色随机线性时滞系统的渐近稳定性   总被引:2,自引:0,他引:2  
首先提出了灰色随机线性时滞系统及其渐近稳定性的概念;然后,利用矩阵理论和随机微分时滞方程解的渐近收敛定理及李雅普诺夫函数,研究了灰色随机线性时滞系统的渐近稳定性,得到了随机淅近稳定的几个充分性条件;最后,通过数值例子说明了所得结果在实际应用中的方便性和有效性.  相似文献   

19.
《国际计算机数学杂志》2012,89(15):2106-2122
The second author's work [F. Wu, X. Mao, and L. Szpruch, Almost sure exponential stability of numerical solutions for stochastic delay differential equations, Numer. Math. 115 (2010), pp. 681–697] and Mao's papers [D.J. Higham, X. Mao, and C. Yuan, Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations, SIAM J. Numer. Anal. 45 (2007), pp. 592–607; X. Mao, Y. Shen, and G. Alison, Almost sure exponential stability of backward Euler–Maruyama discretizations for hybrid stochastic differential equations, J. Comput. Appl. Math. 235 (2011), pp. 1213–1226] showed that the backward Euler–Maruyama (BEM) method may reproduce the almost sure stability of stochastic differential equations (SDEs) without the linear growth condition of the drift coefficient and the counterexample shows that the Euler–Maruyama (EM) method cannot. Since the stochastic θ-method is more general than the BEM and EM methods, it is very interesting to examine the interval in which the stochastic θ-method can capture the stability of exact solutions of SDEs. Without the linear growth condition of the drift term, this paper concludes that the stochastic θ-method can capture the stability for θ∈(1/2, 1]. For θ∈[0, 1/2), a counterexample shows that the stochastic θ-method cannot reproduce the stability of the exact solution. Finally, two examples are given to illustrate our conclusions.  相似文献   

20.
樊华  山秀明  任勇  袁坚 《控制理论与应用》2011,28(11):1627-1633
给定计算机网络中的传输控制协议(transmission control protocol,TCP)流量控制算法,如何确定其稳定域,是网络设计中的一个重要问题.由于网络上控制算法受大量随机因素影响,这相当于对一个由随机微分/差分方程描述的控制系统进行稳定性分析.目前已有研究大多直接对系统方程取期望,转为讨论期望的稳定性,而简单忽略受控TCP流的随机震荡.本文意在指出这种随机震荡给稳定性带来的不可忽视的影响.本文以TCP/RED(含早期随机检测的TCP流)系统为例,首先,从系统的随机微分方程出发,通过在平衡点处线性化,将系统化为含加乘混合噪声的多维线性时不变系统.然后,给出了分别对应时间连续与离散情况的推广的TCP流量控制方程,即含多噪声源的一次时不变随机微分/差分方程组.接着,对此推广形式,推导了其协方差矩阵所满足的矩阵方程,并在此基础上,得到了协方差矩阵极限渐近稳定的充要条件以及此极限的计算公式.在工程设计中,此条件可以作为系统稳定与否的一个替代判据,方差极限公式可用来估计系统的运动范围.最后,将一般公式应用到具体例子上,展示了考虑方差稳定性后系统稳定域的变化.进一步,仿照确定性系统中的处理方法,本文结论还可推广到非线性系统及时变系统.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号