首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, an expert speaker identification system is presented for speaker identification using Turkish speech signals. Here, a discrete wavelet adaptive network based fuzzy inference system (DWANFIS) model is used for this aim. This model consists of two layers: discrete wavelet and adaptive network based fuzzy inference system. The discrete wavelet layer is used for adaptive feature extraction in the time–frequency domain and is composed of discrete wavelet decomposition and discrete wavelet entropy. The performance of the used system is evaluated by using repeated speech signals. These test results show the effectiveness of the developed intelligent system presented in this paper. The rate of correct classification is about 90.55% for the sample speakers.  相似文献   

2.
In this paper, an intelligent speaker identification system is presented for speaker identification by using speech/voice signal. This study includes both combination of the adaptive feature extraction and classification by using optimum wavelet entropy parameter values. These optimum wavelet entropy values are obtained from measured Turkish speech/voice signal waveforms using speech experimental set. It is developed a genetic wavelet adaptive network based on fuzzy inference system (GWANFIS) model in this study. This model consists of three layers which are genetic algorithm, wavelet and adaptive network based on fuzzy inference system (ANFIS). The genetic algorithm layer is used for selecting of the feature extraction method and obtaining the optimum wavelet entropy parameter values. In this study, one of the eight different feature extraction methods is selected by using genetic algorithm. Alternative feature extraction methods are wavelet decomposition, wavelet decomposition – short time Fourier transform, wavelet decomposition – Born–Jordan time–frequency representation, wavelet decomposition – Choi–Williams time–frequency representation, wavelet decomposition – Margenau–Hill time–frequency representation, wavelet decomposition – Wigner–Ville time–frequency representation, wavelet decomposition – Page time–frequency representation, wavelet decomposition – Zhao–Atlas–Marks time–frequency representation. The wavelet layer is used for optimum feature extraction in the time–frequency domain and is composed of wavelet decomposition and wavelet entropies. The ANFIS approach is used for evaluating to fitness function of the genetic algorithm and for classification speakers. It has been evaluated the performance of the developed system by using noisy Turkish speech/voice signals. The test results showed that this system is effective in detecting real speech signals. The correct classification rate is about 91% for speaker classification.  相似文献   

3.
This paper investigates the feasibility of applying a relatively novel neural network technique, i.e., extreme learning machine (ELM), to realize a neuro-fuzzy Takagi-Sugeno-Kang (TSK) fuzzy inference system. The proposed method is an improved version of the regular neuro-fuzzy TSK fuzzy inference system. For the proposed method, first, the data that are processed are grouped by the k-means clustering method. The membership of arbitrary input for each fuzzy rule is then derived through an ELM, followed by a normalization method. At the same time, the consequent part of the fuzzy rules is obtained by multiple ELMs. At last, the approximate prediction value is determined by a weight computation scheme. For the ELM-based TSK fuzzy inference system, two extensions are also proposed to improve its accuracy. The proposed methods can avoid the curse of dimensionality that is encountered in backpropagation and hybrid adaptive neuro-fuzzy inference system (ANFIS) methods. Moreover, the proposed methods have a competitive performance in training time and accuracy compared to three ANFIS methods.  相似文献   

4.
An inference network is proposed as a tool for bidirectional approximate reasoning. The inference network can be designed directly from the given fuzzy data (knowledge). If a fuzzy input is given for the inference network, then the network renders a reasonable fuzzy output after performing approximate reasoning based on an equality measure. Conversely, due to the bidirectional structure, the network can yield its corresponding reasonable fuzzy input for a given fuzzy output. This property makes it possible to perform forward and backward reasoning in the knowledge base system  相似文献   

5.
A hybrid fuzzy neural networks and genetic algorithm (GA) system is proposed to solve the difficult and challenging problem of constructing a system model from the given input and output data to predict the quality of chemical components of the finished sintering mineral. A bidirectional fuzzy neural network (BFNN) is proposed to represent the fuzzy model and realize the fuzzy inference. The learning process of BFNN is divided into off-line and online learning. In off-line learning, the GA is used to train the BFNN and construct a system model based on the training data. During online operation, the algorithm inherited from the principle of backpropagation is used to adjust the network parameters and improve the system precision in each sampling period. The process of constructing a system model is introduced in details. The results obtained from the actual prediction demonstrate that the performance and capability of the proposed system are superior  相似文献   

6.
Speech and speaker recognition is an important topic to be performed by a computer system. In this paper, an expert speaker recognition system based on optimum wavelet packet entropy is proposed for speaker recognition by using real speech/voice signal. This study contains both the combination of the new feature extraction and classification approach by using optimum wavelet packet entropy parameter values. These optimum wavelet packet entropy values are obtained from measured real English language speech/voice signal waveforms using speech experimental set. A genetic-wavelet packet-neural network (GWPNN) model is developed in this study. GWPNN includes three layers which are genetic algorithm, wavelet packet and multi-layer perception. The genetic algorithm layer of GWPNN is used for selecting the feature extraction method and obtaining the optimum wavelet entropy parameter values. In this study, one of the four different feature extraction methods is selected by using genetic algorithm. Alternative feature extraction methods are wavelet packet decomposition, wavelet packet decomposition – short-time Fourier transform, wavelet packet decomposition – Born–Jordan time–frequency representation, wavelet packet decomposition – Choi–Williams time–frequency representation. The wavelet packet layer is used for optimum feature extraction in the time–frequency domain and is composed of wavelet packet decomposition and wavelet packet entropies. The multi-layer perceptron of GWPNN, which is a feed-forward neural network, is used for evaluating the fitness function of the genetic algorithm and for classification speakers. The performance of the developed system has been evaluated by using noisy English speech/voice signals. The test results showed that this system was effective in detecting real speech signals. The correct classification rate was about 85% for speaker classification.  相似文献   

7.
Fuzzy models describe nonlinear input‐output relationships with linguistic fuzzy rules. A hierarchical fuzzy modeling is promising for identification of fuzzy models of target systems that have many input variables. In the identification, (1) determination of a hierarchical structure of submodels, (2) selection of input variables of each submodel, (3) division of input and output space, (4) tuning of membership functions, and (5) determination of fuzzy inference method are carried out. This article presents a hierarchical fuzzy modeling method with an uneven division method of input space of each submodel. For selecting input variables of submodels, the multiple objective genetic algorithm (MOGA) is utilized. MOGA finds multiple models with different input variables and different numbers of fuzzy rules as compromising solutions. A human designer can choose desirable ones from these candidates. The proposed method is applied to acquisition of fuzzy rules from cyclists' pedaling data. In spite of a small number of data, the obtained model was able to give detailed suggestions to each cyclist. © 2002 Wiley Periodicals, Inc.  相似文献   

8.
提出了一种设计递阶模糊系统的简易而有效的方法.在得到一个单级模糊系统的基础上,用灵敏度分析法对每一个输入变量的重要性进行排序,从而确定每一级子系统的输入变量.利用减法聚类和自适应神经 模糊推理系统逐级对子系统进行训练.所得到的递阶模糊系统可进一步得到简化.仿真实例证实了设计方法的有效性.  相似文献   

9.
《Applied Soft Computing》2008,8(1):609-625
Adaptive neural network based fuzzy inference system (ANFIS) is an intelligent neuro-fuzzy technique used for modelling and control of ill-defined and uncertain systems. ANFIS is based on the input–output data pairs of the system under consideration. The size of the input–output data set is very crucial when the data available is very less and the generation of data is a costly affair. Under such circumstances, optimization in the number of data used for learning is of prime concern. In this paper, we have proposed an ANFIS based system modelling where the number of data pairs employed for training is minimized by application of an engineering statistical technique called full factorial design. Our proposed method is experimentally validated by applying it to the benchmark Box and Jenkins gas furnace data and a data set collected from a thermal power plant of the North Eastern Electric Power Corporation (NEEPCO) Limited. By employing our proposed method the number of data required for learning in the ANFIS network could be significantly reduced and thereby computation time as well as computation complexity is remarkably reduced. The results obtained by applying our proposed method are compared with those obtained by using conventional ANFIS network. It was found that our model compares favourably well with conventional ANFIS model.  相似文献   

10.
基于OWPB和LS-SVM的电路板故障诊断系统   总被引:1,自引:0,他引:1  
针对雷达电路板检修困难的问题,提出了基于最优小波包基和最小二乘支持向量机相结合的雷达电路板故障诊断方法。利用小波变换对采样数据进行去噪处理,通过小波包分解选择最优小波包基提取熵值作为故障特征向量,并作为基于最小二乘支持向量机的雷达故障诊断模型的输入向量,经诊断模型输出后,完成雷达电路板故障诊断。基于此方法设计了雷达电路板故障诊断系统,提高了雷达故障诊断的正确性和效率。  相似文献   

11.
This paper shows fundamentals and applications of the novel parametric fuzzy cerebellar model articulation controller (P-FCMAC) network. It resembles a neural structure that derived from the Albus CMAC algorithm and Takagi–Sugeno–Kang parametric fuzzy inference systems. The Gaussian basis function is used to model the hypercube structure and the linear parametric equation of the network input variance is used to model the TSK-type output. A self-constructing learning algorithm, which consists of the self-clustering method (SCM) and the backpropagation algorithm, is proposed. The proposed the SCM scheme is a fast, one-pass algorithm for a dynamic estimation of the number of hypercube cells in an input data space. The clustering technique does not require prior knowledge of things such as the number of clusters present in a data set. The backpropagation algorithm is used to tune the adjustable parameters. Illustrative examples were conducted to show the performance and applicability of the proposed model.  相似文献   

12.
In this paper, an intelligent diagnosis system based on principle component analysis (PCA) and adaptive network based on fuzzy inference system (ANFIS) for the heart valve disease is introduced. This intelligent system deals with combination of the feature extraction and classification from measured Doppler signal waveforms at the heart valve using the Doppler ultrasound (DHS). Here, the wavelet entropy is used as features. This intelligent system has three phases. In pre-processing phase, the data acquisition and pre-processing for DHS signals are performed. In feature extraction phase, the feature vector is extracted by calculating the 12 wavelet entropy values for per DHS signal and dimension of Doppler signal dataset, which are 12 features, is reduced to 6 features using PCA. In classification phase, these reduced wavelet entropy features are given to inputs ANFIS classifier. The correct diagnosis performance of the PCA–ANFIS intelligent system is calculated in 215 samples. The classification accuracy of this PCA–ANFIS intelligent system was 96% for normal subjects and 93.1% for abnormal subjects.  相似文献   

13.
《Applied Soft Computing》2008,8(1):225-231
Recently, significant of the robust texture image classification has increased. The texture image classification is used for many areas such as medicine image processing, radar image processing, etc. In this study, a new method for invariant pixel regions texture image classification is presented. Wavelet packet entropy adaptive network based fuzzy inference system (WPEANFIS) was developed for classification of the twenty 512 × 512 texture images obtained from Brodatz image album. There, sixty 32 × 32 image regions were randomly selected (overlapping or non-overlapping) from each of these 20 images. Thirty of these image regions and other 30 of these image regions are used for training and testing processing of the WPEANFIS, respectively. In this application study, Daubechies, biorthogonal, coiflets, and symlets wavelet families were used for wavelet packet transform part of the WPEANFIS algorithm, respectively. In this way, effects to correct texture classification performance of these wavelet families were compared. Efficiency of WPEANFIS developed method was tested and a mean %93.12 recognition success was obtained.  相似文献   

14.
On-line tool condition monitoring system with wavelet fuzzy neural network   总被引:4,自引:0,他引:4  
In manufacturing systems such as flexible manufacturing systems (FMS), one of the most important issues is accurate detection of the tool conditions under given cutting conditions. An investigation is presented of a tool condition monitoring system (TCMS), which consists of a wavelet transform preprocessor for generating features from acoustic emission (AE) signals, followed by a high speed neural network with fuzzy inference for associating the preprocessor outputs with the appropriate decisions. A wavelet transform can decompose AE signals into different frequency bands in the time domain. The root mean square (RMS) values extracted from the decomposed signal for each frequency band were used as the monitoring feature. A fuzzy neural network (FNN) is proposed to describe the relationship between the tool conditions and the monitoring features; this requires less computation than a back propagation neural network (BPNN). The experimental results indicate the monitoring features have a low sensitivity to changes of the cutting conditions and FNN has a high monitoring success rate in a wide range of cutting conditions; TCMS with a wavelet fuzzy neural network is feasible.  相似文献   

15.
Adaptive-tree-structure-based fuzzy inference system   总被引:2,自引:0,他引:2  
A new fuzzy inference system named adaptive-tree-structure-based fuzzy inference system (ATSFIS) is proposed, which is abbreviated as fuzzy tree (FT). The fuzzy partition of input data set and the membership function of every subset are obtained by means of the fuzzy binary tree structure based algorithm. Two structures of FT, FT-I, and FT-II, are presented. The characteristics of FT are: 1) The parameters of antecedent and consequent for a Takagi-Sugeno fuzzy model are learned simultaneously; and 2) The fuzzy partition of input data set is adaptive to the pattern of data distribution to optimize the number of the subsets automatically. The main advantage of FT is more suitable to solve the problems, for which the number of input dimension is large, since by using the fuzzy binary tree, every farther set will be partitioned into only two subsets no matter how large the input dimension is. Therefore, in some sense the "rule explosion" will be avoided possibly. In comparison with some existing fuzzy inference systems, it is shown that the FT is also of less computation and high accuracy. The advantages of FT are illustrated by simulation results.  相似文献   

16.
基于模糊小波神经网络的交通标志识别方法研究   总被引:1,自引:1,他引:1  
对交通标志进行实时、正确的识别,是车辆自动导航中一个重要方面.该文介绍了一种基于模糊小波神经网络的交通标志识别方法.该方法首先利用不变矩来提取图像特征,然后将特征向量输入模糊小波神经网络进行识别.该网络以小波函数作为模糊隶属函数,将模糊技术与神经网络相结合,利用神经网络实现模糊推理,并可对隶属函数的形状进行实时调整,从而使网络具有更强的学习和自适应能力.实验证明,该方法具有较高的识别精度和速度,在车辆自动导航中具有较高的应用价值.  相似文献   

17.
A neural fuzzy system with fuzzy supervised learning   总被引:2,自引:0,他引:2  
A neural fuzzy system learning with fuzzy training data (fuzzy if-then rules) is proposed in this paper. This system is able to process and learn numerical information as well as linguistic information. At first, we propose a five-layered neural network for the connectionist realization of a fuzzy inference system. The connectionist structure can house fuzzy logic rules and membership functions for fuzzy inference. We use alpha-level sets of fuzzy numbers to represent linguistic information. The inputs, outputs, and weights of the proposed network can be fuzzy numbers of any shape. Furthermore, they can be hybrid of fuzzy numbers and numerical numbers through the use of fuzzy singletons. Based on interval arithmetics, a fuzzy supervised learning algorithm is developed for the proposed system. It extends the normal supervised learning techniques to the learning problems where only linguistic teaching signals are available. The fuzzy supervised learning scheme can train the proposed system with desired fuzzy input-output pairs which are fuzzy numbers instead of the normal numerical values. With fuzzy supervised learning, the proposed system can be used for rule base concentration to reduce the number of rules in a fuzzy rule base. Simulation results are presented to illustrate the performance and applicability of the proposed system.  相似文献   

18.
We summarize Jang's architecture of employing an adaptive network and the Kalman filtering algorithm to identify the system parameters. Given a surface structure, the adaptively adjusted inference system performs well on a number of interpolation problems. We generalize Jang's basic model so that it can be used to solve classification problems by employing parameterized t-norms. We also enhance the model to include weights of importance so that feature selection becomes a component of the modeling scheme. Next, we discuss two ways of identifying system structures based on Jang's architecture: the top-down approach, and the bottom-up approach. We introduce a data structure, called a fuzzy binary boxtree, to organize rules so that the rule base can be matched against input signals with logarithmic efficiency. To preserve the advantage of parallel processing assumed in fuzzy rule-based inference systems, we give a parallel algorithm for pattern matching with a linear speedup. Moreover, as we consider the communication and storage cost of an interpolation model. We propose a rule combination mechanism to build a simplified version of the original rule base according to a given focus set. This scheme can be used in various situations of pattern representation or data compression, such as in image coding or in hierarchical pattern recognition  相似文献   

19.
This paper proposes a novel model for predicting complex behavior of smart pavements under a variety of environmental conditions. The mathematical model is developed through an adaptive neuro fuzzy inference system (ANFIS). To evaluate the effectiveness of the ANFIS model, the temperature fluctuations at different locations in smart pavement systems equipped with pipe network systems under solar radiations is investigated. To develop the smart pavement ANFIS model, various sets of input and output field experimental data are collected from large-scale experimental test beds. The solar radiation and the inlet water flow are used as input signals for training complex behavior of the smart pavement ANFIS model, while the temperature fluctuation of the smart pavement system is used for the output signal. The trained model is validated using 20 different data sets that are not used for the training process. It is demonstrated from the simulation that the ANFIS identification approach is effective in modeling complex behavior of the pavement–fluid system under a variety of environmental conditions. Comparison with high fidelity data proves the viability of the proposed approach in pavement health monitoring setting, as well as automatic control systems.  相似文献   

20.
In a cement factory, a rotary kiln is the most complex component and it plays a key role in the quality and quantity of the final product. This system involves complex nonlinear dynamic equations that have not been completely worked out yet. In conventional modeling procedures, a large number of the involved parameters are crossed out and an approximation model is presented instead. Therefore, the performance of the obtained model is very important and an inaccurate model may cause many problems in the design of a controller. This study presents a Takagi-Sugeno (TS)-type fuzzy system called a wavelet projection fuzzy inference system (WPFIS) in which a dimension reduction section is used at the input stage of the fuzzy system. In order to clarify the structure of the extracted features, structural learning with forgetting (SLF) based on Minkowski norms is proposed. In addition, gradient descent (GD) was used as a training algorithm. The results show that the proposed method has higher performance in comparison with conventional models. The data collected from Saveh White Cement Company were used in our simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号