首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper proposes two robust inverse optimal control schemes for spacecraft with coupled translation and attitude dynamics in the presence of external disturbances. For the first controller, an inverse optimal control law is designed based on Sontag-type formula and the control Lyapunov function. Then a robust inverse optimal position and attitude controller is designed by using a new second-order integral sliding mode control method to combine a sliding mode control with the derived inverse optimal control. The global asymptotic stability of the proposed control law is proved by using the second method of Lyapunov. For the other control law, a nonlinear H inverse optimal controller for spacecraft position and attitude tracking motion is developed to achieve the design conditions of controller gains that the control law becomes suboptimal H state feedback control. The ultimate boundedness of system state is proved by using the Lyapunov stability theory. Both developed robust inverse optimal controllers can minimise a performance index and ensure the stability of the closed-loop system and external disturbance attenuation. An example of position and attitude tracking manoeuvres is presented and simulation results are included to show the performance of the proposed controllers.  相似文献   

2.
In this paper, we develop a global set stabilization method for the attitude control problem of spacecraft system based on quaternion. The control law that uses both optimal control and finite‐time control techniques can globally stabilize the attitude of spacecraft system to a set of equilibria. First, for the kinematic subsystem, we design a virtual optimal angular velocity. To obtain the global minimum of the performance index, this optimal angular velocity is only discontinuous in initial values. It can be regarded as a combination of open loop control and closed loop control. Then for the dynamic subsystem, we design a finite‐time control law that can force the angular velocity to track the virtual optimal angular velocity. It is proved that the closed loop system satisfies global set stability in the absence of disturbances. In the presence of disturbances, the system trajectory will converge to a neighborhood of the equilibrium set. Rigorous analysis shows that by introducing finite‐time control techniques, the closed loop system possesses a better disturbance rejection property. The control method is more natural and energy‐efficient. The effectiveness of the proposed method is demonstrated by simulation results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Attitude control of a rigid spacecraft under input delays, disturbances, parameter uncertainties, actuator errors, and constraints is a challenging problem. In this paper, these problems are considered simultaneously, and a robust control approach to attitude tracking of a rigid spacecraft is exploited. The design methodology is based on three steps: (1) compensating input delays by using the backstepping technique, (2) design of a disturbance observer for the delayed system by using the super-twisting algorithm to estimate unknown internal and external disturbances, then adding a feedforward compensation law based on the estimated signal to the backstepping controller to attenuate the effects of disturbances, (3) employing a robust least-square scheme to map the specified control command on the redundant actuators in the presence of actuator error, including actuator magnitude deviation and misalignment, with regard to actuator amplitude and rate constraints. The effectiveness of the proposed algorithm is shown by various numerical simulations.  相似文献   

4.
As well-known disturbance rejection methods, active disturbance rejection control and disturbance observer-based control can effectively improve the control performances of complex systems in the presence of disturbances. However, the accurate rejection of multiple disturbances for control systems of practical engineering, for example, the attitude control system of flexible spacecraft, is still a bottleneck problem. In order to further improve the anti-disturbance capability and reduce the conservativeness, this paper proposes a novel enhanced anti-disturbance control law for the attitude control system of flexible spacecraft by combining active disturbance rejection control and disturbance observer-based control in a unified framework. More specifically, the disturbance from flexible vibration is described by an uncertain exogenous system based on the partially known information including elastic damping ratios and modal frequencies. The disturbance observer-based control is utilized to estimate and thereby reject this disturbance. On the other hand, the other disturbances such as external environmental disturbance and complex model nonlinearity are merged into a equivalent disturbance with bounded derivative, which is compensated by using the active disturbance rejection control law. Stability and robustness analysis are carried out for the disturbance observer and extended state observer. Finally, simulation results of low-earth-orbit flexible satellite are presented to verify the effectiveness of proposed methods.  相似文献   

5.
基于积分滑模的航天器有限时间姿态容错控制   总被引:1,自引:0,他引:1  
针对存在执行机构故障和外部干扰的刚体航天器姿态稳定系统,本文提出了基于积分滑模的容错控制策略,实现了姿态有限时间稳定.首先,利用齐次系统相关理论,设计了一类饱和有界的基础控制律,保证了不存在执行机构故障和干扰情况下的姿态有限时间稳定.在此基础上,利用积分滑模和自适应技术设计了一种有限时间姿态鲁棒容错控制方案,对执行机构故障和干扰进行有效的补偿;该方案能够快速地实现姿态高精度稳定,并抑制系统抖振现象.最后,将本文提出的姿态容错控制方案进行数值仿真与对比,验证了方案的有效性与优越性.  相似文献   

6.
针对存在未知时变惯量不确定性、执行机构衰退故障和外部干扰力矩的非刚体航天器系统,研究了航天器自适应姿态跟踪容错控制问题,结合非线性鲁棒控制方法、自适应方法、容错控制理论和参数估计方法,提出了一种鲁棒自适应姿态跟踪容错控制器。所设计的控制器克服了执行器故障、惯量不确定性以及外界干扰对系统稳定性的影响,保证了航天器姿态及角速度能够跟踪上时变的期望状态,实现了跟踪误差系统最终一致有界稳定。最后通过数字仿真验证了所提方法的有效性,并且与已有方法进行了对比,说明了所提方法的优越性。  相似文献   

7.
针对反作用飞轮安装存在偏差的过驱动航天器姿态跟踪问题, 提出一种有限时间姿态补偿控制策略. 通过设计自适应滑模控制器保证实现对不确定性转动惯量与外部干扰的鲁棒控制, 同时实现对飞轮安装偏差的补偿控制, 并应用Lyapunov 稳定性理论证明了该控制器能够在有限时间内实现姿态跟踪控制. 最后, 将该控制器应用于某型航天器的姿态跟踪控制, 仿真结果验证了所提出方法的有效性.  相似文献   

8.
This paper investigates the attitude tracking and disturbance rejection problem of rigid spacecraft.Using a new matrix product,i.e.,the semitensor product of matrices,the parameter uncertainties in the inertia matrix is isolated. Both the parameter uncertainties and the external disturbance are handled by robust adaptive control method.By combining the semitensor product of matrices,backstepping control methodology,and adaptive control technique,a new adaptive control law is designed.Simulation result is also presented to demonstrate the proposed design method.  相似文献   

9.
《Applied Soft Computing》2007,7(3):818-827
This paper proposes a reinforcement learning (RL)-based game-theoretic formulation for designing robust controllers for nonlinear systems affected by bounded external disturbances and parametric uncertainties. Based on the theory of Markov games, we consider a differential game in which a ‘disturbing’ agent tries to make worst possible disturbance while a ‘control’ agent tries to make best control input. The problem is formulated as finding a min–max solution of a value function. We propose an online procedure for learning optimal value function and for calculating a robust control policy. Proposed game-theoretic paradigm has been tested on the control task of a highly nonlinear two-link robot system. We compare the performance of proposed Markov game controller with a standard RL-based robust controller, and an H theory-based robust game controller. For the robot control task, the proposed controller achieved superior robustness to changes in payload mass and external disturbances, over other control schemes. Results also validate the effectiveness of neural networks in extending the Markov game framework to problems with continuous state–action spaces.  相似文献   

10.

在追踪航天器本体坐标系下, 联合相对轨道动力学模型和四元素姿态动力学模型, 引入推进器配置矩阵, 建立六自由度姿态和轨道一体化模型. 该模型避免了控制输入向追踪器本体坐标系下的转换. 在此基础上, 采用输入-状态(ISS) 稳定性原理, 在干扰输入信息完全未知的情况下, 设计了非线性鲁棒一体化控制律. 该控制律实现了对椭圆轨道上目标航天器的扰动抑制和跟踪, 具有较好的鲁棒性和跟踪性. 最后, 针对运行在椭圆轨道上的目标给出仿真结果, 表明了所提出的一体化控制律的可行性和有效性.

  相似文献   

11.
考虑输入受限的航天器安全接近姿轨耦合控制   总被引:1,自引:0,他引:1  
针对存在外部扰动和输入受限的航天器安全接近的问题,当扰动上界未知时,基于积分滑模控制理论设计了抗饱和的有限时间自适应姿轨耦合控制器.控制器的设计过程中采用了新型的避碰函数限制追踪航天器运动区域进而保证接近过程中航天器的安全性,同时通过辅助系统和自适应算法分别处理了输入受限和扰动上界未知.借助李雅普诺夫理论证明了在控制器的作用下系统状态在有限时间内收敛,且能够保证追踪航天器在实现航天器接近的过程中不与目标航天器发生碰撞.最后通过数字仿真进一步验证了所设计控制器的有效性.  相似文献   

12.
本文以三轴稳定充液航天器为研究背景,在其进行姿态机动控制过程中充分考虑了外部未知干扰、参数不确定、执行器故障和控制输入饱和等因素的影响,提出了一种固定时间终端滑模控制策略.动力学建模过程中,利用粘性球摆等效力学模型模拟液体燃料小幅晃动,通过拉格朗日方程推导出航天器的耦合动力学模型.姿态控制器设计过程中,首先构造固定时间...  相似文献   

13.
受扰线性离散系统的前馈2反馈最优控制   总被引:3,自引:0,他引:3  
研究具有已知动态特性但未知初始条件的持续外界扰动的线性离散系统最优控制问题。给出了前馈一反馈最优控制律的存在唯一性条件,并提出了最优控制律的设计算法.通过降维扰动观测器解决了前馈一反馈最优控制律的物理不可实现问题.对近海结构物振动控制的实例仿真表明,该设计算法易于实现,在抑制外部持续扰动和鲁棒性方面优于经典的状态反馈最优控制。  相似文献   

14.
This paper studies finite-time attitude tracking control problem of a rigid spacecraft system with external disturbances and inertia uncertainties. Firstly, a new finite-time attitude tracking control law is designed using nonsingular terminal sliding mode concepts. In the absence and presence of external disturbances and inertia uncertainties, this controller can drive the attitude and angular velocity tracking errors to reach zero in finite time. Secondly, a finite-time disturbance observer is introduced to estimate the disturbance, and a composite controller is developed which consists of a feedback control based on nonsingular terminal sliding mode method and compensation term based on finite-time disturbance observer. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system is ensured by the Lyapunov approach. Numerical simulations on attitude control of spacecraft are also given to demonstrate the performance of the proposed controllers.  相似文献   

15.
The problem of finite-time attitude synchronisation and tracking for a group of rigid spacecraft nonlinear dynamics is investigated in this paper. First of all, in the presence of environmental disturbance, a novel decentralised control law is proposed to ensure that the spacecraft attitude error dynamics can converge to the sliding surface in finite time; then the final practical finite-time stability of the attitude error dynamics can be guaranteed in small regions. Furthermore, a modified finite-time control law is proposed to address the control chattering. The control law can guarantee a group of spacecraft to attain desired time-varying attitude and angular velocity while maintaining attitude synchronisation with other spacecraft in the formation. Simulation examples are provided to illustrate the feasibility of the control algorithm presented in this paper.  相似文献   

16.
The attitude consensus problem of multiple rigid spacecraft systems is one of the key issues in spacecraft formation flying and has been extensively studied. In this paper, we further consider the leader‐following attitude consensus problem of multiple rigid uncertain spacecraft systems subject to a class of multi‐tone sinusoidal disturbances with arbitrarily unknown amplitudes, initial phases, frequencies, and constant biases. In contrast to the existing results, in order to achieve asymptotic reference tracking and disturbance rejection by smooth control, we have integrated the distributed observer approach with internal model and adaptive control techniques. Simulation results are shown to validate the effectiveness of the proposed control law. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
四旋翼无人机鲁棒自适应姿态控制   总被引:1,自引:0,他引:1  
 四旋翼无人机的姿态控制是自主飞行控制的核心,针对四旋翼姿态易受外界环境干扰和内部参数摄动等不确定性影响的问题,设计了一种鲁棒自适应反步控制器,以提高四旋翼的鲁棒性。建立了四旋翼完整的姿态运动模型,并将其转化为含有广义不确定性的多输入多输出非线性系统。根据该系统满足严格反馈的结构特点,设计了反步控制器; 针对系统中存在的外部干扰和内部参数摄动等不确定性,引入了一类鲁棒自适应函数来抵消该不确定性对系统的影响; 采用非线性跟踪微分器估计虚拟控制量的微分信号,减小了反步控制器设计中普遍存在的“计算膨胀”问题; 通过构造Lyapunov 函数证明闭环系统是稳定且指数收敛的。仿真结果表明,所设计控制器具有良好的控制效果和鲁棒性。  相似文献   

18.
This paper investigates the problem of output feedback attitude tracking control of a rigid spacecraft in the presence of external disturbances. Two optimal control laws with a disturbance estimator are developed to deal with this problem. An adapted extended state observer is used to estimate the angular velocity tracking errors and to allow for compensation for the total disturbances. The proposed control can be expressed as the sum of a nonlinear optimal controller and an estimated disturbance. For the optimal controller, the state‐dependent Riccati equation and optimal Lyapunov techniques are employed to solve the infinite‐time nonlinear optimal control problem. The developed controllers can minimize a performance index and ensure the stability of the closed‐loop system and external disturbance attenuation. On the other hand, using the adapted extended state observer, the asymptotic convergence of estimation error dynamics is proven. An example of multiaxial attitude manoeuvres is given and simulation results are included to demonstrate and verify the usefulness of the proposed controllers.  相似文献   

19.
针对含有外部扰动和执行器故障的一类航天器姿态控制系统,本文提出基于迭代学习观测器的主动容错控制方案.首先,建立了含有外部扰动和执行器故障的航天器姿态控制系统的运动学和动力学模型.其次,为了提高观测器的故障估计精度,在传统迭代学习观测器设计基础上引入上一时刻状态估计误差信息,文章提出一种改进型学习估计算法.进一步,基于滑模控制和指定时间稳定理论,利用学习观测器的故障估计信息设计指定时间主动容错控制器.与现有的航天器主动容错控制方案相比,本文所提出的算法的优势在于可以使故障系统的姿态能在指定时间跟踪上指令信号.基于Lyapunov方法,本文从理论上证明了改进型学习观测器和姿态容错控制系统的稳定性.最后,通过数值仿真,说明了所提容错控制方案的有效性和可行性.  相似文献   

20.
本文针对控制力矩陀螺框架伺服系统中存在的参数不确定性、摩擦非线性及外部干扰问题,提出了一种考虑LuGre摩擦的自适应鲁棒控制方法.针对陀螺框架伺服系统未知惯量和阻尼系数、LuGre摩擦参数不确定性及未知外部干扰上界,设计参数更新律对其进行估计.在此基础上,为提高系统对不确定参数及未知干扰的鲁棒性,设计带有期望补偿的自适应鲁棒控制器,可实现对LuGre摩擦非线性的精确补偿,同时减小测量信号噪声及外部干扰对系统的不利影响.应用Lyapunov稳定性理论分析了闭环系统的稳定性.对挠性航天器姿态机动控制的仿真结果,验证了所提方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号