首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
一种基于词袋模型的新的显著性目标检测方法   总被引:1,自引:0,他引:1  
杨赛  赵春霞  徐威 《自动化学报》2016,42(8):1259-1273
提出一种基于词袋模型的新的显著性目标检测方法.该方法首先利用目标性计算先验概率显著图,然后在图像的超像素区域内建立词袋模型,并基于此特征计算条件概率显著图,最后根据贝叶斯推断将先验概率和条件概率显著图进行合成.在ASD、SED以及SOD显著性目标公开数据库上与目前16种主流方法进行对比,实验结果表明本文方法具有更高的精度和更好的查全率,能够一致高亮地凸显图像中的显著性目标.  相似文献   

2.
《计算机工程》2017,(5):204-209
针对现有异常流量检测方法的识别准确率低且快速识别需要确定阈值等问题,基于词袋模型聚类,提出一种改进的网络异常流量识别方法。通过对已有的异常流量和正常流量进行K-means均值聚类,得到网络流量中的流量关键点,将网络流量转化映射到相应流量关键点后建立直方图,并采用半监督学习方式对异常流量进行检测。实验结果表明,与基于朴素贝叶斯、支持向量机等的识别方法相比,该方法具有更好的异常流量识别效果。  相似文献   

3.
一种基于优化“词袋”模型的物体识别方法*   总被引:1,自引:0,他引:1  
针对传统基于“词袋”模型物体识别现有方法的不足,对现特征表达、视觉词典和图像表示方法进行优化,以提高物体识别正确率。采用HUE直方图与SIFT特征描述符分别描述兴趣点周围的颜色和形状特征,实现“词袋”模型下两种特征的特征级和图像级融合,引入K-means++聚类算法生成视觉词典,并利用软权重思想将特征向量映射到视觉单词形成图像直方图。实验结果表明,所述方法会产生较高的物体识别正确率,且识别结果不受两种特征融合权重的影响。  相似文献   

4.
为了提高图像检索的效率,提出一种基于视觉词袋模型的图像检索方法。一方面在图像局部特征提取算法中,使用添加渐变信息的盒子滤波器构造尺度空间,以保留图像更多的细节信息,另一方面在特征表达时仅计算一次特征点圆形邻域内的Haar小波响应,避免了Haar小波响应的重复计算,并在保证描述子旋转不变性的同时做降维处理。同时,以改进k-means对特征库聚类构建加权的视觉词典,基于概率计算的方式选取k-means初始聚类中心,降低了传统k-means聚类效果对初始聚类中心选择的敏感性。实验结果表明该方法比传统方法具有更高的效率,特征提取速度提高48%左右,查准率提高2%以上。  相似文献   

5.
李愈  马燕  黄慧 《计算机应用与软件》2023,(11):170-175+247
传统词袋模型构建的词典不稳定,且忽略词向量先后顺序,在用其进行人体动作识别时,识别效果不稳定,尤其对倒序动作识别效果不佳。针对这些问题,提出一种基于时空联合频率直方图实现动作分类的方法。提取肢体关键角度信息,把关键角度的帧间差值作为时间特征描述子;构建稳定的时间词袋与空间词袋,利用其联合频率直方图表示动作序列,增强动作时间特性;利用支持向量机(SVM)实现动作分类。在一个具有挑战性的数据集-UTKinect数据集上进行实验,结果表明,相比于传统词袋模型与一些已有方法,该方法能够有效提高动作识别的准确率。  相似文献   

6.
采用与传统的利用特征匹配方法进行地物目标识别不同的思路,提出一种基于显著语义模型的机场与油库目标的识别方法.该方法在低层特征空间利用视觉关注模型将航拍图像分解成若干个视觉显著性子图,提取出目标可能存在的候选区域;对训练图像集构建基于SIFT局部特征的特征袋语义模型,并利用模型中的特征字典提取出显著性子图所包含的显著语义特征,以实现对机场和油库目标的快速检测识别.利用Google Earth构建了多种不同成像条件下的典型目标数据库,对文中方法的有效性进行验证.实验的结果表明,该方法比传统的特征匹配方法具有更好的识别性能和更高的运算效率,同时对于光照、视点和尺度变化等干扰具有较强的鲁棒性.  相似文献   

7.
针对分布式拒绝服务(DDoS)攻击有效荷载快速变化,人工干预需要依赖经验设定预警阈值以及异常流量特征码更新不及时等问题,提出一种基于二进制流量关键点词袋(BSP-BoW)模型的DDoS攻击检测算法。该算法可以自动从当前网络的流量数据中训练得到流量关键点(SP),针对不同拓扑网络进行自适应异常检测,减少频繁更新特征集带来的人工成本。首先,对已有的攻击流量和正常流量进行均值聚类,寻找网络流量中的SP;然后,将原有的流量转化映射到相应SP上使用直方图进行形式化表达;最后,通过欧氏距离进行DDoS攻击的分类检测。在公开数据库DARPA LLDOS1.0上的实验结果表明,所提算法的异常网络流量识别率优于现有的局部加权学习(LWL)、支持向量机(SVM)、随机树(Random Tree)、logistic回归分析(logistic)、贝叶斯(NB)等方法。所提的基于词袋聚类模型算法在拒绝服务攻击的异常流量识别中有很好的识别效果和泛化能力,适合部署在中小企业(SME)网络流量设备上。  相似文献   

8.
徐威  唐振民 《自动化学报》2015,41(4):799-812
有效的显著性目标检测在计算机视觉领域一直是具有挑战性的问题.本文首先对图像进行树滤波处理,采用Quick shift方法将其分解为超像素,再通过仿射传播聚类把超像素聚集为代表性的类.与以往方法不同,本文提出根据各类中拥有的超像素的类内和类间的空间离散程度及其位于图像边界的数目,自适应地估计先验背景,并提取条状背景区域;由目标性度量(Objectness measure)粗略地描述前景范围后,通过与各类之间的空间交互信息,估计先验前景;再经过连通区域优化前景与背景信息.最后,综合考虑各超像素与先验背景和前景在CIELab颜色空间的距离,并进行显著性中心加权,得到显著图.在MSRA-1000和复杂的SOD数据库上的实验结果表明,本文算法能准确、完整地检测出显著性目标,优于21种State-of-the-art算法,包括基于部分类似原理的方法.  相似文献   

9.
一种视频运动目标的检测与识别方法   总被引:1,自引:0,他引:1  
给出连续图像帧差分和二次帧差分改进的图像HSI差分模型,采用自适应分割算法能在任意条件下自动提取运动目标区域.定义运动目标的特征分析和计算,通过特征匹配判断,识别所需识别目标的区域.实验结果表明该方法是有效的,且有良好的鲁棒性.  相似文献   

10.
视觉词袋模型在基于内容的图像检索中已经得到了广泛应用,然而对于自然图像的检索,由于图像目标视角多样、背景复杂、光照多变等原因,传统的视觉词袋模型的检索准确率仍然比较低。提出一种按类视觉词袋模型,即采用按照图像中目标物体的类别进行分组训练视觉词,从而提高视觉词的表征能力,改善检索效果;并根据检索返回图像的标签,以投票方式对查询目标做出判别,辅以标签检索,从而较大地提高了检索结果的准确率。  相似文献   

11.
针对基于视觉的传统海面目标检测算法在水面无人艇的自动避碰应用中存在检测精确率、召回率低以及对复杂场景的适应性不足的问题,提出一种基于概率图与视觉显著性的海面目标检测算法。首先利用概率图模型分割出原始图像中的海界限区域与海面孤立目标;然后针对海界限区域子图像特点,设计了一种基于方向抑制的梯度特征,并结合背景先验改进频率调谐显著图,利用特征融合的方法提取海界限区域的潜在目标。实验结果表明,该算法能够有效抑制云、飞鸟、海天线和海杂波的背景干扰。与传统方法相比,提出的方法具有更高的精确率与召回率,且满足无人艇自动避碰实时性的要求。  相似文献   

12.
针对移动镜头下的运动目标检测中的背景建模复杂、计算量大等问题,提出一种基于运动显著性的移动镜头下的运动目标检测方法,在避免复杂的背景建模的同时实现准确的运动目标检测。该方法通过模拟人类视觉系统的注意机制,分析相机平动时场景中背景和前景的运动特点,计算视频场景的显著性,实现动态场景中运动目标检测。首先,采用光流法提取目标的运动特征,用二维高斯卷积方法抑制背景的运动纹理;然后采用直方图统计衡量运动特征的全局显著性,根据得到的运动显著图提取前景与背景的颜色信息;最后,结合贝叶斯方法对运动显著图进行处理,得到显著运动目标。通用数据库视频上的实验结果表明,所提方法能够在抑制背景运动噪声的同时,突出并准确地检测出场景中的运动目标。  相似文献   

13.
规则网格是视觉词袋模型中常用的图像检测方法,该方法抽取图像所有区块,获得背景区块和目标区块完整的图像信息。事实上,抽取的背景区块信息对类别的判定往往会有一定的混淆作用。以“摩托车”类和“小汽车”类的图像为例,这两类图像背景特征相似,大多都是道路,一般的分类方法很可能将它们分为相同类别。可见,背景信息会干扰图像分类结果。因此,提出一种提取目标区域词袋特征的图像分类方法。利用图像分割去除背景信息提取目标区域;对目标区域构建视觉词袋模型;使用SVM分类器对图像进行分类。PASCAL VOC2006及PASCAL VOC2010数据集上的实验结果表明,提取目标区域词袋特征的图像分类方法具有较好的分类性能。  相似文献   

14.
李君浩  刘志 《计算机应用》2015,35(12):3560-3564
为了能够准确地检测出图像中的显著性对象,提出了一种新的基于视觉显著性图与似物性的对象检测算法。该算法首先在图像上提取大量具有较高似物性度量的矩形窗口,并估算出对象可能出现的位置,将窗口级的似物性度量转换到像素级的似物性度量;然后把原始显著性图与像素级的似物性图进行融合,生成加权显著性图,分别二值化原始显著性图和加权显著性图,利用凸包检测得到最大查找窗口区域与种子窗口区域;最后结合边缘概率密度搜索出最优的对象窗口。在公开数据集MSRA-B上的实验结果表明,该算法在准确率、召回率以及F-测度方面优于最大化显著区域检测算法、区域密度最大化算法以及似物性对象检测算法等已有的多种算法。  相似文献   

15.
为了改善基于词包模型与支持向量机(SVM)分类一幅图对应一个标签的单标签分类问题,提出了一种基于超像素词包模型与SVM分类的图像标注算法.将超像素分割结果作为词包模型的基本单元,用词包模型生成的视觉词汇表示超像素区域特征,保留了图像中的同质区域,很好地利用了图像的区域特征.仿真结果表明,该方法能有效改善基于词包模型与SVM分类的单标签分类问题,且分类的准确性有所提高.  相似文献   

16.
17.
稠密轨迹的人体行为识别对每一帧全图像密集采样导致特征维数高、计算量大且包含了无关的背景信息。提出基于显著性检测和稠密轨迹的人体行为识别方法。首先对视频帧进行多尺度静态显著性检测获取动作主体位置,并与对视频动态显著性检测的结果线性融合获取主体动作区域,通过仅在主体动作区域内提取稠密轨迹来改进原算法;然后采用Fisher Vector取代词袋模型对特征编码增强特征表达充分性;最后利用支持向量机实现人体行为识别。在KTH数据集和UCF Sports数据集上进行仿真实验,结果表明改进的算法相比于原算法识别准确率有所提升。  相似文献   

18.
目的 动态场景图像中所存在的静态目标、背景纹理等静态噪声,以及背景运动、相机抖动等动态噪声,极易导致运动目标检测误检或漏检。针对这一问题,本文提出了一种基于运动显著性概率图的目标检测方法。方法 该方法首先在时间尺度上构建包含短期运动信息和长期运动信息的构建时间序列组;然后利用TFT(temporal Fourier transform)方法计算显著性值。基于此,得到条件运动显著性概率图。接着在全概率公式指导下得到运动显著性概率图,确定前景候选像素,突出运动目标的显著性,而对背景的显著性进行抑制;最后以此为基础,对像素的空间信息进行建模,进而检测运动目标。结果 对提出的方法在3种典型的动态场景中与9种运动目标检测方法进行了性能评价。3种典型的动态场景包括静态噪声场景、动态噪声场景及动静态噪声场景。实验结果表明,在静态噪声场景中,Fscore提高到92.91%,准确率提高到96.47%,假正率低至0.02%。在动态噪声场景中,Fscore提高至95.52%,准确率提高到95.15%,假正率低至0.002%。而在这两种场景中,召回率指标没有取得最好的性能的原因是,本文所提方法在较好的包络目标区域的同时,在部分情况下易将部分目标区域误判为背景区域的,尤其当目标区域较小时,这种误判的比率更为明显。但是,误判的比率一直维持在较低的水平,且召回率的指标也保持在较高的值,完全能够满足于实际应用的需要,不能抵消整体性能的显著提高。另外,在动静态噪声场景中,4种指标均取得了最优的性能。因此,本文方法能有效地消除静态目标干扰,抑制背景运动和相机抖动等动态噪声,准确地检测出视频序列中的运动目标。结论 本文方法可以更好地抑制静态背景噪声和由背景变化(水波荡漾、相机抖动等)引起的动态噪声,在复杂的噪声背景下准确地检测出运动目标,提高了运动目标检测的鲁棒性和普适性。  相似文献   

19.
通用对象识别技术   总被引:1,自引:0,他引:1       下载免费PDF全文
遵循通用对象识别系统的一般框架,重点讨论了各种特征区域选取、特征区域描述技术,比较了几种主流的识别模型和模型的训练方法,并介绍了对象识别系统的性能评估方法及其常用数据集,最后分析了未来可能的研究发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号