首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
基于故障诊断观测器的输出反馈容错控制设计   总被引:1,自引:0,他引:1  
张柯  姜斌 《自动化学报》2010,36(2):274-281
针对自适应故障诊断观测器需要误差系统满足苛刻的严格正实条件(Strictly positive real, SPR)和难于处理输出存在扰动的不确定性系统等问题, 提出了一种新型的增广故障诊断观测器的设计方法, 不仅显著地拓宽了自适应故障诊断观测器的适用范围, 而且其具有处理系统扰动的良好性能. 在故障估计的基础上, 提出了动态输出反馈容错控制的设计方法, 避免了基于观测器的状态反馈容错控制的设计难点. 同时, 故障诊断观测器和输出反馈容错控制是分开设计的, 并且又考虑了各自的性能, 简化了设计过程. 最后, 通过仿真实验验证了所提方法的有效性.  相似文献   

2.
3.
Based on variable structure systems (VSS) theory, this paper presents a new method of estimating the disturbances (or system nonlinearities and any model uncertainties) for continuous-time multi-input multi-output (MIMO) minimum phase (with respect to the relation between the disturbance and the output) dynamical systems. The designed robust method requires only the input and output measurements of the system. Even for MIMO systems under the assumption that the partial states directly affected by the disturbances do not directly appear in the outputs (when it is considered in the state space), the disturbances can still be estimated by applying the proposed formulation. The estimated disturbances are then employed to construct a robust state observer. Further, the estimated disturbances and the state observer are applied to synthesize a controller to place the desired stable poles and to cancel the disturbances. A design example and simulation results are presented to show the practicality and effectiveness of the proposed algorithm.  相似文献   

4.
Presents a state observer for a class of nonlinear systems based on the input output linearization. While the previous result presented state observers for nonlinear systems of full relative degree, we proposed a procedure fur the design of nonlinear state observers which do not require the hypothesis of full relative degree. Assuming that there exists a global state observer for internal dynamics and that some functions are globally Lipschitz, we can design a globally convergent state observer. It is also shown that if the zero dynamics are locally exponentially stable, then there exists a local state observer. An example is given to illustrate the proposed design of nonlinear state observers  相似文献   

5.
This paper addresses the output feedback tracking control of a class of multiple‐input and multiple‐output nonlinear systems subject to time‐varying input delay and additive bounded disturbances. Based on the backstepping design approach, an output feedback robust controller is proposed by integrating an extended state observer and a novel robust controller, which uses a desired trajectory‐based feedforward term to achieve an improved model compensation and a robust delay compensation feedback term based on the finite integral of the past control values to compensate for the time‐varying input delay. The extended state observer can simultaneously estimate the unmeasurable system states and the additive disturbances only with the output measurement and delayed control input. The proposed controller theoretically guarantees prescribed transient performance and steady‐state tracking accuracy in spite of the presence of time‐varying input delay and additive bounded disturbances based on Lyapunov stability analysis by using a Lyapunov‐Krasovskii functional. A specific study on a 2‐link robot manipulator is performed; based on the system model and the proposed design procedure, a suitable controller is developed, and comparative simulation results are obtained to demonstrate the effectiveness of the developed control scheme.  相似文献   

6.
In this paper, we propose a discrete‐time nonlinear sliding mode observer for state and unknown input estimations of a class of single‐input/single‐output nonlinear uncertain systems. The uncertainties are characterized by a state‐dependent vector and a scalar disturbance/unknown input. The discrete‐time model is derived through Taylor series expansion together with nonlinear state transformation. A design methodology that combines the discrete‐time sliding mode (DSM) and a nonlinear observer design is adopted, and a strategy is developed to guarantee the convergence of the estimation error to a bound within the specified boundary layer. A relation between sliding mode gain and boundary layer is established for the existence of DSM, and the estimation is made robust to external disturbances and uncertainties. The unknown input or disturbance can also be estimated through the sliding mode. The conditions for the asymptotical stability of the estimation error are analysed. Application to a bioreactor is given and the simulation results demonstrate the effectiveness of the proposed scheme. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Nonlinear observer design via passivation of error dynamics   总被引:1,自引:0,他引:1  
We present a new design scheme of nonlinear state observers (global, full order, asymptotic observers) through passivation of the error dynamics. In order to consider passivity of the error dynamics for the observer problem, we place a conceptual input and output on the generalized error dynamics which also includes the plant, and the strictness of passivity is extended with respect to a set in which the estimation error becomes zero. Then, output feedback passivation for the error dynamics will lead to the construction of a state observer. It is also shown that a nonlinear observer is generally vulnerable to measurement disturbance, in the sense that even an arbitrarily small measurement disturbance can lead to a blowup of the error state. However, due to the passivity of the error dynamics, the proposed nonlinear injection gain can be easily modified for the observer to be robust to measurement disturbances.  相似文献   

8.
ABSTRACT

The work addresses the output regulation problem for coupled linear multiple input multiple output (MIMO) hyperbolic partial integro-differential equation systems with disturbances affecting the systems through the space and boundary input. The exosystems are extended to generate ramp signals and general family of polynomial signals. The system decomposition is applied through the state transformation and yields a decoupled equivalent system. Based on the decoupled form, the backstepping transformation is applied and then in the new coordinate, the full state and output-feedback regulators are designed, respectively. For the state feedback regulator, the corresponding regulator equation is obtained and its solvability conditions are provided to facilitate the regulator design and feasibility. The design of observer-based regulator is based on the decoupling of the observer error system into a PDE subsystem and an ODE subsystem so that the backstepping approach achieves stabilisation by eigenvalue assignment leading to design of observer stabilizing gains.  相似文献   

9.
We present a hybrid-type observer for detecting the switching time and estimating both the active mode and the states of continuous-time switched linear systems. The systems under consideration have external inputs and are affected by unknown disturbances. In addition, noise corrupts the output measurements. In this setting the switching cannot be detected immediately, and thus, this paper presents a condition that relates the amount of delay to the sizes of the unknown disturbances/noises, the external inputs, and the states, and the strength of the observability. Once the condition is satisfied, the proposed observer and algorithm return the exact active mode and approximate state information of the switched system. A numerical example is also presented to show the performance of our algorithm..  相似文献   

10.
A state observer design procedure is proposed for nonlinear locally Lipschitz systems with high relative degree from the available for measurements output to the nonlinearity. The possible presence of disturbances is taken into account. The solution is based on logic-based control and the high order super-twisting observer. The approach is applicable to nonlinear systems with bounded solutions.  相似文献   

11.
This paper considers fault detection and estimation issues for a class of nonlinear systems with uncertainty, using an equivalent output error injection approach. A particular design of sliding mode observer is presented for which the parameters can be obtained using LMI techniques. A fault estimation approach is presented to estimate the fault and the estimation error is dependent on the bounds on the uncertainty. For a special class of uncertainty, a fault reconstruction scheme is presented where the reconstructed signal can approximate the fault signal to any accuracy. The proposed fault estimation/reconstruction signals are only based on the available plant input/ouput information and can be calculated on-line. Finally, a simulation study on a robotic arm system is presented to show the effectiveness of the scheme.  相似文献   

12.
针对一类受到外部干扰且有输入时滞的多智能体系统,讨论了在固定有向拓扑下的领导跟随扰动抑制一致性问题。首先,对于存在外部干扰的多智能体系统,给出分布式状态观测器,使得每个智能体的系统状态和外部干扰被同时估计。其次,基于截取预测方法,利用邻居智能体相对输出信息获得的状态估计和自身干扰估计为每个智能体设计一致性协议。然后,用Lyapunov-Krasovskii理论对系统的观测性和稳定性进行分析,获得满足多智能体系统稳定的充分条件,并将控制器增益和观测器增益求解转化为求解线性矩阵不等式(LMIs)的形式。最后,通过一个仿真例子来验证所得结果的可行性和有效性。  相似文献   

13.
This article focuses on the robust fault tolerant control (FTC) problem for a class of Lipschitz nonlinear multi-agent systems(MASs) subject to sensor faults. Firstly, sensor faults are transformed into actuator faults via introducing a new intermediate auxiliary state variable, and a distributed adaptive fault estimation observer is designed to estimate the state information and the concerned faults by using the relative output estimation error. Then, the sufficient existence conditions for the observer to satisfy the robust performance index are given. Thirdly, based on the results of observer design, a new design method of dynamic output feedback controller is proposed to implement consensus of MASs and ensure the desired disturbance rejection performance. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.  相似文献   

14.
In this paper, the problem of state observation with exponential error decay for nonlinear systems affine in the input is considered and an observer is proposed. For such an observer, the drift-observability property of the system (i.e., observability for zero input), together with an assumption on the input amplitude or on the observation relative degree, are sufficient conditions for exponential convergence of the observation error. The existence of an exponential observer is correlated to the existence of a solution for an H Riccati-like inequality. Global and semiglobal convergence results are presented  相似文献   

15.
This work introduces an observer structure and highlights its distinct advantages in fault detection and isolation. Its application to the issue of shorted turns detection in synchronous generators is demonstrated. For the theoretical foundation, the convergence and design of Luenberger-type observers for disturbed linear time-invariant (LTI) single-input single-output (SISO) systems are reviewed with a particular focus on input and output disturbances. As an additional result, a simple observer design for stationary output disturbances that avoids a system order extension, as in classical results, is proposed.  相似文献   

16.
In this article, finite-dimensional residual generators are directly designed for Riesz-spectral systems with bounded input and output operators to detect faults. This is achieved by using finite-dimensional observers, that can estimate linear functionals of the state without spillover. These observers allow for a decoupling of the unknown disturbances from the estimation error dynamics under mild assumptions. Then, a finite-dimensional residual generator is obtained by approximately decoupling the state from the residual, that is generated by the observer states and the outputs. It is shown that the resulting approximation error can be made small by increasing the observer order. Then, fault detection with the finite-dimensional residual generator can be assured by introducing a time-varying threshold. A faulty Euler–Bernoulli beam with structural damping illustrates the proposed finite-dimensional fault detection approach.  相似文献   

17.
This paper deals with the design of observers for a class of continuous time nonlinear multi‐input multi‐output systems with nonlinear outputs. Geometric tools are used to transform the original system into an appropriate observer canonical form. Furthermore, a pole placement technique is used to obtain a desired transient response of resulting error dynamics. The observer design is presented for two cases. In both cases, it is shown that the observer gain can be obtained from the solution of a Riccati equation. An illustrative example of state estimation in induction motors is presented to explain the proposed observer design. The performance of the method is also verified by numerical simulations. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

18.
A parametric approach to robust fault detection in linear systems with unknown disturbances is presented. The residual is generated using full-order state observers (FSO). Based on an analytical solution to a type of Sylvester matrix equations, the parameterization of the observer gain matrix is given. In terms of the design degrees of freedom provided by the parametric observer design and a group of introduced parameter vectors, a sufficient and necessary condition for fullorder state observer design with disturbance decoupling is then established. By properly constraining the design parameters according to this proposed condition, the effect of the disturbance on the residual signal is also decoupled, and a simple algorithm is developed. The presented approach offers all the degrees of design freedom. Finally, a numerical example illustrates the effect of the proposed approach.  相似文献   

19.
In this article, the problem of robust output feedback stabilization of single‐input single‐output nonlinear systems is studied in the event‐triggering framework. In this work, an event‐triggered output feedback law based on a high‐gain observer is constructed, which guarantees the stability of closed‐loop system. First, the high‐gain observer with a triggering scheme is designed to estimate the plant state in the presence of external disturbances subject to any satisfactory accuracy of the estimation error. The observer‐based triggering mechanism decides the transmission of plant output to the observer by observing a certain event condition. Similarly, another triggering mechanism is designed using the estimated state of observer that triggers the control signal to be updated only when it is satisfied. Under this proposed event‐triggering framework, the stability of closed‐loop system is then analyzed. Here, we provide the simplified design technique, in which the high‐gain parameter and the triggering thresholds can be selected independently to achieve any desired bound for the plant trajectory. The results are finally demonstrated through simulation of a numerical example.  相似文献   

20.
具有输入饱和的近空间飞行器鲁棒控制   总被引:1,自引:0,他引:1  
针对近空间飞行器这一类存在外部扰动,输入饱和和参数不确定的多输入多输出线性系统,提出了一种基于干扰观测器的抗饱和鲁棒控制方案.将干扰观测器与抗饱和控制技术相结合,从而消除系统存在的未知外部扰动、输入饱和和不确定性对系统控制的影响.首先,设计干扰观测器对线性外部系统产生的未知扰动进行估计.然后根据干扰观测器输出,通过超前抗饱和方法设计抗饱和补偿器,并将其加入到鲁棒控制器的设计中,保证闭环系统存在输入饱和、未知外部扰动和参数不确定情况下的稳定性.为便于设计,干扰观测器、抗饱和补偿器和控制器设计矩阵均通过求解线性矩阵不等式得到.最后,将提出的鲁棒抗饱和控制方法应用于近空间飞行器,仿真结果验证了该控制方案的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号