首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, optimal H2 internal model controller (IMC) is designed for control of unstable cascade processes with time delays. The proposed control structure consists of two controllers in which inner loop controller (secondary controller) is designed using IMC principles. The primary controller (master controller) is designed as a proportional-integral-derivative (PID) in series with a lead-lag filter based on IMC scheme using optimal H2 minimisation. Selection of tuning parameter is important in any IMC based design and in the present work, maximum sensitivity is used for systematic selection of the primary loop tuning parameter. Simulation studies have been carried out on various unstable cascade processes. The present method provides significant improvement when compared to the recently reported methods in the literature particularly for disturbance rejection. The present method also provides robust closed loop performances for large uncertainties in the process parameters. Quantitative comparison has been carried out by considering integral of absolute error (IAE) and total variation (TV) as performance indices.  相似文献   

2.
A simple method is proposed to design P/PI controllers for a series cascade control system for unstable first order plus time-delay (FOPTD) systems. In this paper, the controller design for unstable FOPTD systems cascaded in series with stable/unstable FOPTD systems is considered. The proposed method is based on equating the coefficients of corresponding powers of s and s2 in the numerator to α1 and α2 times those of the denominator of the closed-loop transfer function for a servo problem. The open loop system consists of an unstable FOPTD system cascaded in series with a stable/unstable FOPTD system. Only two tuning parameters (α1 and α2) are required for the design of controllers. The closed-loop performances are evaluated for both the servo and regulatory problems and the performances are found to be better than that of the well established synthesis method. The robustness for uncertainty in the model parameters is studied and compared with that of the controllers designed by the synthesis method.  相似文献   

3.
In this paper, an H2 analytical decoupling control scheme with multivariable disturbance observer for both stable and unstable multi-input/multi-output (MIMO) systems with multiple time delays is proposed. Compared with conventional control strategies, the main merit is that the proposed control scheme can improve the system performances effectively when the MIMO processes with severe model mismatches and strong external disturbances. Besides, the design method has three additional advantages. First, the derived controller and observer are given in analytical forms, the design procedure is simple. Second, the orders of the designed controller and observer are low, they can be implemented easily in practice. Finally, the performance and robustness can be adjusted easily by tuning the parameters in the designed controller and observer. It is useful for practical application. Simulations are provided to illustrate the effectiveness of the proposed control scheme.  相似文献   

4.
In this paper, a modified Smith predictor design is proposed for enhanced control of non-minimum phase unstable second-order time-delay processes with/without zero. The proposed method involves the design of two controllers, i.e. set-point tracking controller and disturbance rejection controller. Set-point tracking controller is designed as a proportional-integral-derivative (PID) in series with a lag filter using direct synthesis method. The disturbance rejection controller is designed as a PID in series with a lead/lag filter based on direct synthesis method. Set-point weighting is considered for minimising the overshoots. The proposed method is applied by simulation on several second-order unstable processes. Robustness studies have been carried out using the small-gain theorem. The method gives good nominal and robust control performances. Significant improvement in the disturbance rejection is obtained with the proposed method when compared to the recently reported methods in the literature.  相似文献   

5.
In the present paper a new tuning procedure is proposed for the ideal PID controller in series with the first-order noise filter. It is based on the recently proposed extension of the Ziegler-Nichols frequency-domain dynamics characterization of a process Gp(s). Measured process characteristics are the ultimate frequency and ultimate gain, the angle of the tangent to the Nyquist curve of the process at the ultimate frequency, and Gp(0). For a large class of processes the same tuning formulae can be effectively applied to obtain closed-loop responses with predictable properties. Load disturbance step responses without the undershoot and reference step responses with negligible overshoot are obtained by analyzing a test batch consisting of stable, integrating and unstable processes, including dead-time and oscillatory dynamics. The proposed tuning makes possible to specify the desired sensitivity to the high frequency measurement noise and the desired maximum sensitivity. Comparison with the optimal ideal PID controller in series with the first-order noise filter is presented and discussed. The extension of the proposed method to the PI controller tuning is direct. Comparison with the optimal PI controller is presented and discussed.  相似文献   

6.
The proposed method for designing multivariable controller is based on ideal decoupler D(s) and PID controller optimization under constraints on the robustness and sensitivity to measurement noise. The high closed-loop system performance and robustness are obtained using the same controller in all loops. The method is effective despite the values and positions of the right half plane zeros and dead-times in the process transfer function matrix Gp(s). The validity of the proposed multivariable control system design and tuning method is confirmed using a test batch consisting of Two-Input Two-Output (TITO) stable, integrating and unstable processes, and one Three-Input Three-Output (TITO) stable process.  相似文献   

7.
8.
In this paper, an H2 optimal input-load disturbance rejection (ILDR) controller for integrating processes with dead time is proposed based on the internal model control principle. The main contribution of this work is that the optimal solution under ILDR criterion for integrating processes with dead time and input constant disturbances has been derived based on algebraic theory. To further improve the performance for both set-point tracking and input disturbance rejection, a two-degree-of-freedom (TDOF) control design method has also been developed. Compared with previous advanced control methods, the proposed design method has three main advantages. First, the optimal ILDR controller is derived systematically on the basis of algebraic theory. The designed controller is given in an analytical form. Second, a simple tune principle is developed. The set-point tracking performance specification and robustness stability specification can be quantitatively achieved by monotonously tuning the performance degree in the designed controller. Finally, both optimal set-point tracking performance and input disturbance rejection can be achieved by the proposed TDOF control structure. Numerical simulations are given to illustrate the effectiveness of the proposed method.  相似文献   

9.
The proposed PID controller optimization is based on the frequency response of a process Gp(s) and maximization of the proportional gain, under constraints on the desired sensitivity to measurement noise, desired maximum sensitivity and desired maximum complementary sensitivity. The set-point and load disturbance step responses with negligible overshoot are obtained for stable processes, processes with oscillatory dynamics, integrating and unstable processes. Simulations, with a band-limited white noise added to the controlled variable, and experimental results, on a laboratory thermal plant with noisy measurements, are used to demonstrate the effectiveness of the proposed PID optimization method.  相似文献   

10.
This article considers the H control problem for a class of networked control systems (NCSs) based on the event-time-driven model, under which the considered NCS can be changed into a class of switched delay systems including an unstable subsystem. The Lyapunov functional exponential estimation method is adopted to solve the problem of H control for such systems. The switching controller is designed to make the considered system exponentially stable with an H norm bound in terms of linear matrix inequalities. The obtained results are less conservative than existing ones. Finally, one example is given to illustrate the effectiveness and benefit of the proposed method.  相似文献   

11.
In this paper, an analytical two‐degree‐of‐freedom‐control scheme is proposed for controlling processes with large time delay. The main contributions of this paper are that a setpoint response controller and an H PID load‐loop controller are developed based on optimal control theory, and control parameters are derived analytically. This structure can also be used to control integrating or unstable processes.  相似文献   

12.
In this study, a PI‐PD controller tuning method is presented using the weighted geometrical center method, which is based on the calculation of the weighted geometric center of the stability region obtained by the stability boundary locus method. The proposed method for tuning of PI‐PD controller parameters (kd,kf,kp and ki ) is performed in three steps. In the first step, the (kd,kf) parameter region for the inner loop with PD controller is obtained, and then the weighted geometric center of this region is calculated. In the second step, the inner PD loop is reduced to a single block using the numerical values of (kd,kf) that are obtained in the first step. Then, the (kp,ki) values of the external loop with PI controller are determined by the same procedure. This tuning method has some advantages over other tuning methods in terms of simplicity and robustness. The simulation examples show that a PI‐PD controller designed using the proposed method provides good performance results when compared to other tuning methods presented in the literature.  相似文献   

13.
The proportional–integral–derivative (PID) controllers have remained, by far, the most commonly and practically used in all industrial feedback control applications; therefore, there is a continuous effort to improve the system control quality performances. More recently Podlubny has proposed the fractional PIλDμ controller, a generalisation of the classical PID controller, involving an integration action of order λ and differentiation action of order μ. Since then, many researchers have been interested in the use and tuning of this type of controller. In this article, a new conception method of this fractional PIλDμ controller is considered. The basic ideas of this new tuning method are based, in the first place, on the classical Ziegler–Nichols tuning method for setting the parameters of the fractional PIλDμ controller for λ = μ = 1, which means setting the parameters of the classical PID controller, and on the minimum integral squared error criterion by using the Hall–Sartorius method for setting the fractional integration action order λ and the fractional differentiation action order μ. Illustrative examples and simulation results are presented to show the control quality enhancement of this proposed fractional PIλDμ controller conception method compared to the PID controller conception using Ziegler–Nichols tuning method.  相似文献   

14.

Multilayer on-chip inductor and capacitor are proposed in this paper. These passive on-chip components are combined to form series LC on-chip band pass filter and are designed based on VLSI multilayer design concepts to operate at high frequency range applications. Development in RF-VLSI circuits demanded low size on-chip filters to operate at higher order frequency range with better tuning response. Design and simulation of on-chip passive components is carried out in high frequency structural simulator to obtain scattering parameters required for analysis. The designed filter model has good compromise between S 11 and S 21 parameters against frequency satisfying basic conditions of on-chip band pass filter. Proposed filter circuit has centre frequency at 39.5 GHz, bandwidth of 3.17 GHz, loaded Q value of 12.5, fractional bandwidth of 8 % which is suitable for narrow band operations and occupies an on-chip area of 0.0256 mm2. This miniature on-chip band pass filter reduces the size and cost of the chip significantly at radio frequencies when compared with existing models.

  相似文献   

15.
This paper presents a novel fuzzy control design method for maximum power-point tracking (MPPT) via a Takagi and Sugeno (TS) fuzzy model-based approach. A knowledge-dynamic model of the PV system is first developed leading to a TS representation by a simple convex polytopic transformation. Then, based on this exact fuzzy representation, a H observer-based fuzzy controller is proposed to achieve MPPT even when we consider varying climatic conditions. A specified TS reference model is designed to generate the optimum trajectory which must be tracked to ensure maximum power operation. The controller and observer gains are obtained in a one-step procedure by solving a set of linear matrix inequalities (LMIs). The proposed method has been compared with some classical MPPT techniques taking into account convergence speed and tracking accuracy. Finally, various simulation and experimental tests have been carried out to illustrate the effectiveness of the proposed TS fuzzy MPPT strategy.  相似文献   

16.
PID control of MIMO process based on rank niching genetic algorithm   总被引:3,自引:1,他引:2  
Non-linear multiple-input multiple-output (MIMO) processes which are common in industrial plants are characterized by significant interactions and non- linearities among their variables. Thus, tuning several controllers in complex industrial plants is a challenge for process engineers and operators. An approach for adjusting the parameters of n proportional–integral–derivative (PID) controllers based on multiobjective optimization and genetic algorithms (GA) is presented in this paper. A modified genetic algorithm with elitist model and niching method is developed to guarantee a set of solutions (set of PID parameters) with different tradeoffs regarding the multiple requirements of the control performance. Experiments considering a fluid catalytic cracking (FCC) unit, under PI and dynamic matrix control (DMC) are carried out in order to evaluate the proposed method. The results show that the proposed approach is an alternative to classical techniques as Ziegler–Nichols rules and others.  相似文献   

17.
A systematic design of weighting matrices for the H mixed sensitivity problem is presented in this paper. Once a nominal model has been chosen, an initial design of the weighting matrices based on the multiplicative output uncertainty is proposed. The final weighting matrices (which permit that an appropriate closed loop behavior is achieved)are obtained by tuning just one parameter for each output of the system. A multivariable control of two temperatures of a pilot plant (which constitutes a typical example of an industrial process) is included as an application where the validity of the proposed methodology has been tested.  相似文献   

18.
ABSTRACT

In this paper, a simple method is proposed to tune the parameters of Fractional Integral-Fractional Derivative (FIFE) Iλ Dμ controllers based on the Bode diagram. The proposed technique provides a practical approach for tuning FIFE controllers to compensate stable plants. Using the small gain theorem and based on the sensitivity functions analysis, it is proved that by applying the designed FIFE controller the robustness of the compensated system in the presence of plant uncertainties is improved in comparison to the PI controller in a similar structure. Moreover, the closed-loop phase margin and gain crossover frequency are adjustable by tuning the free controller parameters. Simulation results are presented to demonstrate the simplicity of application and effectiveness of the tuned controller.  相似文献   

19.
 To address the problem of improving the positioning accuracy of the read write head of hard disk drives (HDDs), we present a tuning methodology for the HDD servo controller based on the fixed-structure H controller optimization. Since optimization is carried out under the fixed controller structure without any additional sensor, no extra cost is introduced. The effectiveness of the proposed method is demonstrated by simulation and experimentation. Received: 13 September 2001/Accepted: 20 February 2002  相似文献   

20.
This paper analyses the optimal nominal tuning of a new modification of predictive disturbance observer (PDO) based filtered PI control (PDO FPI) applied to a first order plus dead time (FOPDT) plant with exactly known parameters.The impacts of applied filters on optimal controller tuning and on achievable closed loop performance are evaluated first of all. The limits of achievable performance are compared with those of traditional two degree of freedom (2DOF) PI control, with both controllers tuned by the multiple real dominant pole method. This comparison shows the potential of PDO FPI control to improve tracking and regulatory dynamics significantly, permitting the Pareto-like servo/regulator trade-off of 2DOF PI control to be removed.Two PDO FPI tuning approaches are proposed, allowing optimal filter degree and time constants to be evaluated.The first tuning scenario considers optimization of closed loop performance expressed in terms of the Integral of the Absolute Error (IAE) weighted alternatively by the relative total variance TV1 of the control signal. This is carried out by changing the filter order n under the constraint that a constant position of the dominant closed loop pole is maintained. This keeps the dynamics of the setpoint step responses almost unchanged. In the second tuning scenario the optimization is carried out under a constraint on constant speed of disturbance step responses.All the main results are then numerically checked for the integral first order plant with dead time by the performance portrait (PP) method.The analysis presented here shows that the new PDO FPI structure substantially enriches the spectrum of controllers applicable to simple control tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号