首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
Flink流处理系统默认的任务调度策略在一定程度上忽略了集群异构和节点可用资源,导致集群整体负载不均衡。研究分布式节点的实时性能和集群作业环境,根据实际作业环境的异构分布情况,设计结合异构Flink集群的节点优先级调整方法,以基于Ganglia可扩展分布式集群资源监控系统的集群信息为依据,动态调整适应当前作业环境的节点优先级指数。基于此提出Flink节点动态自适应调度策略,通过实时监测节点的异构状况,并在任务执行过程中根据实时作业环境更新节点优先级指数,为系统任务找到最佳的执行节点完成任务分配。实验结果表明,相比于Flink默认的任务调度策略,基于节点优先级调整方法的自适应调度策略在WorldCount基准测试中的运行时间约平均减少6%,可使异构Flink集群在保持集群低延迟的同时,节点资源利用率和任务执行效率更高。  相似文献   

2.
集群系统中自适应负载反馈平衡策略的研究   总被引:2,自引:0,他引:2  
当前在集群系统中,负载平衡策略虽然很多,但是为了减少反馈开销,一般策略为采用在前端估计后端负载,所以不能很好地完成负载平衡的任务。针对这一问题,提出了一种自适应负载反馈平衡策略,各个服务器根据自身负载的变化来决定负载反馈的时机,前端根据负载信息和请求率计算出各个服务器的负载权值,最后根据负载权值来调度服务器处理请求,以实现负载平衡。由于采用了自适应的反馈策略,在获得各个服务器负载信息的同时减少了负载反馈的开销,实现了系统的负载均衡。测试结果表明该策略表现出了一定的优势。  相似文献   

3.
Hadoop平台下,数据的负载均衡对平台性能的发挥有着深远的影响。首先分析默认数据负载均衡的局限性,针对现有默认HDFS(Hadoop Distributed File System)数据负载均衡算法只考虑存储空间利用率,而未考虑节点间异构性的问题,提出一种量化异构集群数据负载均衡的数学模型。该模型根据节点的存储空间及节点性能计算得到各个节点的理论空间利用率,并根据当前集群存储空间利用率动态调整节点最大负载。实验结果表明,提出的数据负载均衡策略能够让异构集群达到更合理的均衡状态,提高集群的效率,并有效减少作业的执行时间。  相似文献   

4.
为了解决当前Hadoop集群在异构资源环境下固有的调度分配方法的不足,提出了一种基于节点能力的自适应调度算法NCAS(node capacity adaptive scheduling)。首先,NCAS算法根据节点性能、任务特征计算得到调度因子;然后,由调度因子确定各节点应分得的数据量与任务槽数;最后,将数据和任务多分给快节点同时少分给慢节点。实验结果表明,与传统的调度算法相比,NCAS算法大幅度减少了备份任务的启动数量,明显减少了作业完成时间,提升了任务执行效率。  相似文献   

5.
针对当前Hadoop集群固有的任务级调度分配方法在运行中存在的负载分布不均的现象,着重对集群节点的执行能力进行了分析与研究.提出了一种基于节点能力的任务自适应调度分配方法.该方法根据节点历史和当前的负载状态,以节点性能、任务特征、节点失效率等作为节点任务量调度分配的依据,并使各节点能自适应地对运行的任务量进行调整.实验结果表明集群的总任务完成时间明显地缩减,各节点的负载更加均衡,节点资源的利用更为合理.  相似文献   

6.
针对更实际的异构集群计算环境,充分考虑处理机具有不同的计算速度、通信能力和存储容量的特性,通过允许计算和通信操作重叠执行,采取多次并行分配计算任务的方法,设计一种可分负载多轮调度算法。实验结果表明,该算法不但能获得与均匀多轮调度(UMR)算法相当的渐近最优调度时间长度,并且能够处理更大规模的应用负载,实用性更强。  相似文献   

7.
针对异构Hadoop环境下仍采用均等的数据分配方法将严重降低MapReduce的性能,提出比例数据分配策略。通过计算异构集群中各节点的计算比率,将已经分割好的数据块重新进行组合,形成数个按比例划分的数据块。每个节点根据自身性能来选择所分配和存储的数据块,从而使异构Hadoop集群中各节点处理数据的时间大致相同,降低节点之间数据的移动量。实验验证了提出的比例数据分配方法可以有效地提高MapReduce的性能,并使数据负载均衡。  相似文献   

8.
本文针对Hadoop自带的Map-Reduce调度器和LATE调度器的不足,提出了自适应的Map-Reduce调度方式。通过历史信息动态调整Map和Reduce任务各阶段的时间比例,以找出真正需要启动备份任务的任务。并将节点进一步分类,在快速节点上启动落后任务的备份任务,从而减小响应时间,并尽量避免节点空载,以免浪费系统资源。最后通过具体实验验证了自适应的Map-Reduce调度的有效性,从历史信息中学习的方式在实验中能减少15%左右的响应时间,综合各种技术,能够减少25%左右的响应时间。  相似文献   

9.
集群系统中的动态反馈负载均衡策略   总被引:2,自引:0,他引:2  
针对Web服务器集群系统中负载动态变化的特点,为了高效地实现任务均衡分配,提出一种新的负载均衡算法。该算法结合动态反馈原理,周期地根据服务器节点真实负载的状态变化情况,改变其相应节点的权值,避免服务器间的负载失衡。实验表明,该方法能有效降低系统平均服务延迟时间和提高吞吐量,提升集群系统的整体性能。  相似文献   

10.
传统经典作业度算法在集群应用中实现简单、执行效率高,但在异构集群环境下由于缺乏在线节点运行状态动态反馈能力和负载均衡能力,降低了计算资源利用率和系统吞吐率.为解决上述问题,设计了一种在异构集群环境下基于主机性能度量的作业负载均衡调度算法,该算法通过收集集群中在线节点的状态信息和作业响应时间遴选出可信节点集合,计算出各可...  相似文献   

11.
CPU-GPU异构多核系统对计算密集型的应用加速效果显著而得到广泛应用,但该系统易出现负载均衡问题。针对此问题,本文提出了一种CPU-GPU异构多核系统的动态任务调度算法。该算法充分利用CPU的线程资源和GPU的计算资源,准确测量CPU和GPU的计算能力,从而动态调整分配到CPU和GPU上的数据块大小,减小负载的总执行时间,提高系统加速比。实验结果表明,该算法使得系统加速比提高34%~103%。  相似文献   

12.
Cluster computing is an attractive approach to provide high‐performance computing for solving large‐scale applications. Owing to the advances in processor and networking technology, expanding clusters have resulted in the system heterogeneity; thus, it is crucial to dispatch jobs to heterogeneous computing resources for better resource utilization. In this paper, we propose a new job allocation system for heterogeneous multi‐cluster environments named the Adaptive Job Allocation Strategy (AJAS), in which a self‐scheduling scheme is applied in the scheduler to dispatch jobs to the most appropriate computing resources. Our strategy focuses on increasing resource utility by dispatching jobs to computing nodes with similar performance capacities. By doing so, execution times among all nodes can be equalized. The experimental results show that AJAS can improve the system performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
异构集群式包构建系统是集群式软件配置管理系统的主要功能部件,也是操作系统发行版本的重要生成系统。本文针对异构集群式包构建系统存在的负载不均、可用性差等不足,引入三级负载均衡调度技术,优化了系统的调度策略,能够更加有效地利用集群系统的系统资源,发挥更加高效的性能,提高了系统的可用性和高效性,便于高质量、高效生成操作系统发行版本。  相似文献   

14.
针对动态负载均衡算法在异构云环境中的任务迁移次数过多的问题,提出了一种最小化任务迁移次数的动态负载均衡(MMLB)算法。MMLB算法通过自适应阈值对虚拟机进行分组、任务选择算法最小化任务迁移的次数、任务调度算法优化任务分配实现了任务的再分配。将MMLB与WRR、HBBLB、LBF算法进行实验对比分析,MMLB算法在Makespan、平均任务响应时间、负载不均衡度等评价指标上表现更优,并且有效降低了任务迁移的次数。实验结果验证了MMLB算法的可行性和有效性。  相似文献   

15.
刘卫宁  高龙 《计算机应用》2013,33(8):2140-2142
负载均衡是提高资源利用率和系统稳定性的重要手段。基于改进的自适应变异粒子群算法,提出了一种异构环境下面向集群负载均衡的任务调度策略。在调度策略的设计中,融入了经济学“二八”定律,通过把握用户对集群节点安全性和可靠性的偏好程度并预估任务的负载信息,在保证系统负载尽量均衡的前提下,最小化任务执行时间的同时提高大客户满意度。仿真实验显示,改进的自适应变异粒子群算法比未改进的自适应变异粒子群算法和基本粒子群算法在收敛速度和跳出局部最优两个方面都有更好的表现。结果表明,改进的自适应变异粒子群算法在保证集群负载均衡的同时可以更好地提高云服务提供商的利润空间。  相似文献   

16.
异构Map-Reduce环境中资源分配策略直接影响其响应时间,如何利用有效的策略将计算任务分配到计算资源是亟待解决的问题。利用和声搜索算法对异构Hadoop集群中的计算资源分配问题进行优化。对问题进行建模时考虑了异构计算机集群中各节点的处理能力、带宽和线路质量和源数据位置等因素对计算资源分配的影响,利用和声搜索算法优化资源分配策略,以期在满足用户需求的前提下提高系统的响应时间。并用Gridsim对算法进行仿真实验,实验结果表明利用和声搜索算法可以达到减少系统响应时间的目的。  相似文献   

17.
为提升Hadoop集群在异构环境下处理硬实时作业的性能,提出一种基于历史进度自动调整作业优先级的调度算法(HAPS)。该算法实时监控作业进度信息,对作业进度率进行指数平滑预测,计算作业剩余执行时间,动态估算作业空闲时间。并据此实时更新作业队列中作业的优先级顺序,优先调度空闲时间小的作业。实验结果表明,HAPS有效地提高了异构环境下硬实时作业的执行成功率。  相似文献   

18.
随着云计算的普及,大量的数据处理选择云服务来完成。现有算法较少考虑异构型系统中虚拟机计算能力的不同,导致某些任务等待时间过长。提出了虚拟机负载大小实时调整的算法。对云计算中资源虚拟化特征,给出一种评估虚拟机计算能力的方法。根据虚拟机能力和运行过程中的状态变化,自适应进行任务量大小调整,满足实时要求。通过任务调度,协调任务完成时间,保持各虚拟机负载的动态均衡,缩短长作业的总执行时间,提高了系统的吞吐量和整体服务能力,提升了效益。实验结果表明,本文算法能自适应地调整任务量大小,进行调度,以维持虚拟机负载均衡。  相似文献   

19.
王浩  罗宇 《计算机工程与科学》2016,38(10):1974-1979
在云计算系统中为了实现负载均衡和资源的高效利用,需要在虚拟机粒度上对云计算系统进行调度,通过热迁移技术将虚拟机从高负载物理节点迁移到低负载物理节点。把负载预测技术和虚拟机动态调度技术相结合,提出了LFS算法,通过虚拟机历史负载数据对虚拟机未来的负载变化情况进行预测,然后根据预测结果对虚拟机进行调度,能够有效地避免云计算系统中高负载物理节点出现,实现负载均衡,提高资源使用率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号