首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 117 毫秒
1.
针对网络中海量的Web服务聚类时,因其表征数据稀疏而导致使用传统建模方法所获效果不理想的问题,提出了一种基于BTM主题模型的Web服务聚类方法。该方法首先利用BTM学习整个Web服务描述文档集的隐含主题,通过推理得出每篇文档的主题分布,然后应用K Means算法对Web服务进行聚类。通过与LDA、TF IDF等方法进行对比发现,该方法在聚类纯度、熵和F Measure指标上均具有更好的效果。实验表明,该方法能够有效解决因Web服务描述所具有的短文本性质而导致的数据稀疏性问题,可显著提高服务聚类效果。  相似文献   

2.
针对短文本特征较少而导致使用传统文本分类算法进行分类效果并不理想的问题,提出了一种融合BTM主题特征和改进了特征权重计算的综合特征提取方法来进行短文本分类。方法中,在TF-IWF的基础上降低词频权重并引入词分布熵,衍生出新的算法计算权重。结合BTM主题模型中各主题下的主题词对词数较少的文档进行补充,并选择每篇文档在各个主题下的概率分布作为另一部分文档特征。通过KNN算法进行多组分类实验,结果证明该方法与传统的TF-IWF等方法计算特征进行比较,F1的结果提高了10%左右,验证了方法的有效性。  相似文献   

3.
针对物联网(IoT)服务描述文本篇幅较短、特征稀疏,直接采用传统的主题模型对IoT服务建模得到的聚类效果不佳,从而导致无法发现最佳服务的问题,提出了一种基于BTM的IoT服务发现方法。该方法首先利用BTM挖掘现有IoT服务的隐含主题,并通过全局主题分布和主题-词分布计算推理得到服务文档-主题概率分布;其次利用K-means算法对服务进行聚类,并返回服务请求的最佳匹配结果。实验结果分析表明,该方法能够有效提高IoT服务的聚类效果,从而得到匹配的最佳服务。与现有的HDP(Hierarchical Dirichlet Process)、基于K-means的隐狄利克雷分配(LDA-K)等方法相比,该方法进行最佳服务发现的准确度(Precision)和归一化折损累积增益(NDCG)均有一定幅度的提高。  相似文献   

4.
信息时代,社交媒体发展异常迅速,微博、微信等社交平台受到了广大网友的喜爱和关注。微博社交平台发布的信息文本相对较短,传播速度快,更新速度快,越来越多的网民在微博平台上表达个人意见和想法。但是,微博短文本的信息较为分散,上下文内容联系不紧密,分析微博短文本情感态度的过程中常常存在一定阻碍和问题。基于此,重点研究了基于改进主题模型的微博短文本情感分析,希望可以深入挖掘质量更高的情感主题。  相似文献   

5.
6.
李卫疆  王真真  余正涛 《计算机科学》2017,44(2):257-261, 274
近年来,微博等社交网络的发展给人们的沟通交流提供了方便。由于每条微博都限定在140字以内,因此产生了大量的短文本信息。从短文本中发现话题日渐成为一项重要的课题。传统的话题模型(如概率潜在语义分析(PLSA)、潜在狄利克雷分配(LDA)等) 在处理短文本方面都面临着严重的数据稀疏问题。另外,当数据集比较集中并且话题文档间的差别较明显时,K-means 聚类算法能够聚类出有区分度的话题。引入BTM话题模型来处理微博数据这样的短文本,以缓解数据稀疏的问题。同时,整合了K-means聚类算法来对BTM模型所发现的话题进行聚类。在新浪微博短文本集上进行的实验证明了此方法发现话题的有效性。  相似文献   

7.
针对话题先验相关报道稀疏性及在话题发展过程中所产生的漂移问题,结合微博文本特点提出了一种基于双态模型的微博话题跟踪方法。该方法首先提出了双态话题模型的构建方法,将其划分为永久存储区域和临时存储区域,分别用于保持跟踪话题的中心和跟踪话题部分特征词的变迁;并在跟踪过程中动态更新话题模型,能有效应对微博话题发展所产生的漂移。将该方法与其他微博话题跟踪方法进行对比,结果表明,该方法使得漏检率和误检率等指标均得到降低,有效地提高了话题跟踪的效果。  相似文献   

8.
社交网络尤其是微博中含有大量的短文本。 短文本不同于传统的文本,其携带的语义特征信息密度低,很难对其进行准确地主题挖掘。针对这一问题,提出根据微博发布时间与原创、转发、评论微博等社交行为信息分配权重,使用背景知识丰富语义特征的微博链结构与基于此改进的LDA主题模型。实验结果表明,相比于标准的LDA模型,本模型的Perplexity值更低,即具有较低的预测不确定度。  相似文献   

9.
针对传统基于用户的博文内容和共同好友数在计算微博用户的相似度时存在潜在误差过大的问题、而基于用户多源背景信息的相似度计算模型有计算复杂度高且忽略了用户的兴趣等问题,提出了一种结合用户兴趣和背景信息的综合相似度计算方法(BIBS)。首先从用户的标签中提取用户的兴趣,当用户的标签缺失时,通过对用户关注关系网络中的重要用户聚类来间接获取用户的兴趣点,以此计算用户的兴趣相似度;其次根据用户的性别、年龄和地点等背景属性计算用户的背景相似度,层次化地挖掘出最相似的用户;最后基于新浪微博的数据进行实验分析。结果表明,与基于多源信息相似度的微博用户推荐算法(MISUR)相比,该方法在用时更少的情况下,准确率、召回率和◢F◣值分别提高了8.1%、16.7%和13.6%,证明了提出的BIBS方法的有效性和准确性。  相似文献   

10.
基于动态主题模型融合多维数据的微博社区发现算法   总被引:1,自引:0,他引:1  
随着微博用户的不断增加,微博网络已经成为用户进行信息交流的平台.针对由于博文长度受限,传统的社区发现算法无法有效解决微博网络的稀疏性等问题,提出了DC-DTM算法.DC-DTM算法首先将微博网络映射为有向加权网络,网络中边的方向反映结点之间的关注关系,利用提出的DTM模型计算出结点之间的语义相似度,并将其作为节点间连边的权重.DTM模型是一种微博主题模型,该模型不仅能够挖掘博客的主题分布,而且能计算出某一主题中用户的影响力大小.其次,利用提出的复杂度低的标签传播算法WLPA进行微博网络的社区发现.该算法的初始化阶段将影响力大的用户结点作为初始结点,标签按照结点的影响力从大到小进行传播,克服了传统标签传播算法的逆流现象,提高了标签传播算法的稳定性.在真实数据上的实验表明,DTM模型能很好地对微博进行主题挖掘,DC-DTM算法能够有效地挖掘出微博网络的社区.  相似文献   

11.
由于短文本长度较短,在分类时会面临数据稀疏和语义模糊等问题.提出新型图卷积网络BTM_GCN,该网络利用双项主题模型(Biterm Topic Model,BTM)在短文本数据集上训练出固定数量的文档级潜在主题,并作为一种节点嵌入到文本异构图中,再与异构图中的文档节点进行连接,最后利用图卷积网络来捕获文档、词与主题节点...  相似文献   

12.
提出一种融合相似度图和随机游走模型的多标签短文本分类算法.首先,以样本数据和标签为节点创建相似度图,借助外部知识库计算样本与标签之间的权重,得到预测样本与标签集合之间的匹配度.然后,将多标签数据映射成多标签依赖图,在图上进行重启随机游走,并将已获得的匹配度作为初始预测值,计算每个节点的概率分布,直到概率分布趋于稳定时,...  相似文献   

13.
基于词共现图的中文微博新闻话题识别   总被引:2,自引:0,他引:2  
针对传统的话题检测算法主要适用于新闻网页和博客等长文本信息,而不能有效处理具有稀疏性的微博数据,给出一种基于词共现图的方法来识别微博中的新闻话题.该方法首先在微博数据预处理之后,综合相对词频和词频增加率2个因素抽取微博数据中的主题词.然后根据主题词间的共现度构建词共现图,把词共现图中每个不连通的簇集看成一个新闻话题,并使用每个簇集中包含信息量较大的几个主题词来表示微博新闻话题.最后在微博数据集上进行实验,实现了对微博中新闻话题的识别,验证了该方法的有效性.  相似文献   

14.
微博作为国内主流社交网站,信息量与日俱增.目前微博用户兴趣挖掘方法大多停留在研究用户浏览网页时点击行为、用户所发微博内容或所在社区等表象层面,尚未深入到微博用户使用特性层面.从用户微博内容出发,结合用户关注对象微博,提出一种改进作者主题模型UF_AT(users focus-author topic).最后对真实数据进行实验得出,模型在用户兴趣主题以及主题词概率值上均高于AT模型,而且用户兴趣主题准确、全面,同时验证了UF_AT模型在挖掘用户兴趣中的有效性.  相似文献   

15.
如何从海量、嘈杂的微博文本流中及时发现负面情感突发话题对于突发事件的应急响应和处置至关重要,而传统的突发话题检测方法往往忽略了负面情感突发话题与非负面情感突发话题之间的区别,为此提出了一种面向微博文本流的负面情感突发话题检测(NE-BTD)算法。首先,将微博中的主题词对的加速度和负面情感强度变化率作为负面情感突发话题的判定依据;然后,利用突发词对的速度确定负面情感突发话题的窗口范围;最后,使用一种基于吉布斯采样的狄利克雷多项式混合模型(GSDMM)聚类算法得到窗口中负面情感突发话题的主题结构。在实验中将所提出的NE-BTD算法与已有的一种基于情感方法的话题检测(EBM-TD)算法进行对比,结果表明所提出的NE-BTD算法相较EBM-TD算法准确率和召回率至少提高了20%,并且可以至少提前40 min检出负面情感突发话题。  相似文献   

16.
如何从海量、嘈杂的微博文本流中及时发现负面情感突发话题对于突发事件的应急响应和处置至关重要,而传统的突发话题检测方法往往忽略了负面情感突发话题与非负面情感突发话题之间的区别,为此提出了一种面向微博文本流的负面情感突发话题检测(NE-BTD)算法。首先,将微博中的主题词对的加速度和负面情感强度变化率作为负面情感突发话题的判定依据;然后,利用突发词对的速度确定负面情感突发话题的窗口范围;最后,使用一种基于吉布斯采样的狄利克雷多项式混合模型(GSDMM)聚类算法得到窗口中负面情感突发话题的主题结构。在实验中将所提出的NE-BTD算法与已有的一种基于情感方法的话题检测(EBM-TD)算法进行对比,结果表明所提出的NE-BTD算法相较EBM-TD算法准确率和召回率至少提高了20%,并且可以至少提前40 min检出负面情感突发话题。  相似文献   

17.
针对小样本短文本分类过程中出现的语义稀疏与过拟合问题,在异构图卷积网络中利用双重注意力机制学习不同相邻节点的重要性和不同节点类型对当前节点的重要性,构建小样本短文本分类模型HGCN-RN。利用BTM主题模型在短文本数据集中提取主题信息,构造一个集成实体和主题信息的短文本异构信息网络,用于解决短文本语义稀疏问题。在此基础上,构造基于随机去邻法和双重注意力机制的异构图卷积网络,提取短文本异构信息网络中的语义信息,同时利用随机去邻法进行数据增强,用于缓解过拟合问题。在3个短文本数据集上的实验结果表明,与LSTM、Text GCN、HGAT等基准模型相比,该模型在每个类别只有10个标记样本的情况下仍能达到最优性能。  相似文献   

18.
为了解决传统的文本主题模型对微博主题挖掘准确率低及不考虑主题之间关联的问题,针对中文微博语料本身的特点,分析LDA和HMM模型优缺点,提出了微博主题挖掘模型MB-HL(Microblog-Hidden Markov Model Latent Dirichlet Allocation)。该模型用逐条微博作为处理单元,建立分布主题-词语矩阵并进行优化,通过LDA模型对微博用户不同的行为建模并提取特征,利用HMM模型强大的时序状态建模能力弥补LDA在主题相关性上的不足,采用Gibbs采样进行推理求解。在真实的新浪微博数据上对比实验表明MB-HL模型能提高近9%主题关键词的准确度,并能有效地发现主题之间的关联关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号