首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
提出了种群进化速度和种群聚合度两个概念,并讨论了在全局收敛过程中惯性权重与两者之间的关系;考虑Sigmoid函数在线性与非线性之间呈现的平滑过渡性,从种群进化速度和种群聚合度两方面出发,提出了基于Sigmoid函数的惯性权重自适应调整方法。通过三个典型的多峰函数,将提出的算法(AS-PSO)与标准粒子群优化算法(SPSO)和基于Sigmoid函数的粒子群优化算法(S-PSO)进行了仿真分析比较,结果表明,AS-PSO算法相比其他两种算法,全局寻优能力更强,在一定程度上解决了收敛性能与全局寻优能力之间的矛盾。  相似文献   

2.
由于不同等级种群的学习能力不一样,其步长大小也会不一样,该文提出了一种新的基于距离代价的自适应惯性权重粒子群优化算法.该算法在运行过程中根据粒子位置的距离代价,将种群分为三个等级,对不同等级的种群采用不同的惯性权重策略更新粒子的速度和位置,并在每次迭代的过程中对全局最优加入一个扰动因子来增加粒子的多样性.通过仿真实验,...  相似文献   

3.
为较好平衡粒子群算法中全局搜索能力与局部搜索能力,分析了PSO(Particle Swarm Optimization)算法中的惯性权重与种群规模、粒子适应度以及搜索空间维度的关系,并把粒子惯性权重定义为这三者的函数.通过在每次迭代后更新每个粒子的惯性权重,实现了自适应调整全局搜索能力与局部搜索能力,并结合动态管理种群的策略提出了改进的粒子群算法.通过在多个常用测试函数上与已有惯性权重调整算法测试比较,证明新算法具有较强的全局寻优能力与较高的搜索效率.  相似文献   

4.
本文基于云理论把粒子群分为三个种群,用云方法修改粒子群算法中惯性权重,同时修改速度更新公式中"认知部分"和"社会部分",引入"均值"的概念,提出了一种基于均值的云自适应粒子群算法。该方法的最大优点是克服了粒子群算法在迭代后期,当一些粒子的个体极值对应的适应度值与全局极值对应的适应度值相差明显时,不能收敛到最优解的缺点。数值实验结果表明,该算法经过较少的迭代次数,就能找到最优解,且平均运算时间减少,降低了算法的平均时间代价。  相似文献   

5.
动态调整惯性权重的粒子群优化算法   总被引:8,自引:1,他引:7  
针对高维复杂优化问题,提出一种改进适应度函数和动态调整惯性权重的粒子群优化算法.首先考虑了搜索点的函数值及其变化率,并将该信息加入适应度函数.利用维惯性权重矩阵自适应动态调整惯性权重,较好地平衡了算法的全局探索和局部开发,并分析了惯性权重随种群多样性的变化关系.在算法后期计算每一维的收敛度,以一定的概率对收敛度最小的维进行变异,以加快算法的收敛速度.对高维测试函数的实验表明,算法提高了全局搜索能力.  相似文献   

6.
一种改进的自适应惯性权重粒子群优化算法   总被引:3,自引:0,他引:3  
研究粒子群算法优化问题,针对基本粒子群算法早熟收敛,易收敛于局部极值的缺点,提出了一种改进的粒子群算法,采用对全局最优微扰和调整惯性权重的方法,改善算法的优化速度和收敛精度.利用个体寻优能力来定义惯性权重,并且将其控制在0.9-0.4范围内,从而合理地调整全局探索能力和局部开发能力.在每次迭代时对当前全局最优粒子进行微扰,改变它的位置,避免它陷入局部最优.经过对一系列测试函数的计算和比较,证明改进方法无论收敛速度、搜索精度及稳定性均有显著改善.  相似文献   

7.
针对岛屿模型的并行粒子群算法没有根本改变粒子速度更新的问题,提出一种自适应惯性权重的分组并行粒子群优化算法。该算法在迭代过程中能自适应地选择加入分组的数量,同时对各组粒子的惯性权重按照组内最优位置的变化进行自适应调整。各组运用多线程技术并行处理,粒子间采用新的信息共享的方式。仿真结果证实,该算法具有较高的收敛速度和收敛精度。  相似文献   

8.
粒子群算法(Particle Swarm Optimization,PSO)的性能极大地依赖于其惯性权重参数的选择策略。当在一次迭代中更新粒子速度时,PSO忽略了粒子间的差异,在所有粒子上应用了相同的惯性权重。针对这一问题,提出一种自适应惯性权重的粒子群算法PSO-AIWA,有效合理地均衡PSO的全局搜索和局部搜索能力。根据当前粒子与全局最优粒子间的差异,算法可以通过基于粒子间距的隶属度函数动态调整粒子的惯性权重,使得每次迭代中,粒子可以根据当前状态在每个维度上的搜索空间内选择合适的惯性权重进行状态更新。在6种基准函数下进行了算法的性能测试,结果表明,与随机式惯性权重PSO算法与线性递减惯性权重PSO-LDIW算法相比,该算法可以获得更好的粒子分布和收敛性。  相似文献   

9.
粒子群优化算法中惯性权重的研究进展   总被引:6,自引:1,他引:6  
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的一类新兴的随机优化算法。惯性权重是粒子群算法中非常重要的参数,可以用来控制算法的开发和探索能力。简单介绍了标准粒子群优化算法的基本原理,全面综述了现有文献中对惯性权重的研究进展情况。  相似文献   

10.
惯性权重是平衡粒子群算法中平衡全局搜索能力与局部搜索能力的重要参数.为实现快速收敛与并避免陷入局部最优,分析了PSO算法中的惯性权重与种群规模、粒子适应度以及搜索空间维度这三者的关系,并把粒子惯性权重定义为这三者的函数以改进PSO算法.该算法在每次迭代后根据此函数更新每个粒子的惯性权重,实现了自适应调整全局搜索能力与局部搜索能力,并结合动态管理种群的策略提出了改进的粒子群算法.通过在多个常用测试函数上与已有惯性权重调整算法测试比较,证明新算法具有较强的全局寻优能力与较高的搜索效率.  相似文献   

11.
针对粒子群算法(Particle Swarm Optimization,PSO)易陷入局部极值的缺陷,提出了一种新的自适应惯性权重混沌PSO算法(a New Chaos Particle Swarm Optimization based on Adaptive Inertia Weight,CPSO-NAIW)。首先采用新的惯性权重自适应方法,很好地平衡粒子的搜索行为,减少算法陷入局部极值的概率,然后在算法陷入局部极值时,引入混沌优化策略,对群体极值位置进行调整,以使粒子搜索新的邻域和路径,增加算法摆脱局部极值的可能。最后,实验结果表明,CPSO-NAIW算法能有效避免陷入局部极值,提高算法性能。  相似文献   

12.
针对标准粒子群优化算法易出现早熟收敛及寻优精度低等缺陷,提出一种基于双质心和自适应指数惯性权重的改进粒子群算法(DCAEPSO)。算法使用粒子搜到的最优解和当前解构造加权的种群质心和最优个体质心,结合使用自适应指数惯性权重调整了速度更新公式。通过几个典型测试函数仿真及Friedman和Holm检验,实验结果显示DCAEPSO比其他粒子群算法寻优能力强。  相似文献   

13.
The paper gives a new particle swarm optimization algorithm with random inertia weight and evolution strategy (REPSO). The proposed random inertia weight is using simulated annealing idea and the given evolution strategy is using the fitness variance of particles to improve the global search ability of PSO. The experiments with six benchmark functions show that the convergent speed and accuracy of REPSO is significantly superior to the one of The PSO with linearly decreasing inertia weight LDW-PSO.  相似文献   

14.
适应度排序改进惯性权重的粒子群算法   总被引:1,自引:0,他引:1       下载免费PDF全文
改进PSO算法的惯性权重。惯性权重不仅随代数纵向线性变化,也根据当前和迄今粒子的适应度重排序横向线性变化。横向线性变化上限不变,下限逐渐减小,使得横向线性变化数值范围随代数逐渐增大。惯性权重数值随着代数逐渐取负,并且适应度差的粒子取负的几率更大。得到基于粒子适应度排序改进惯性权重的粒子群算法(ASMIWPSO算法)。通过仿真学解释ASMIWPSO算法。Rastrigrin函数测试对比ASMIWPSO算法、PSO算法,说明ASMIWPSO算法具有更好的优化结果。  相似文献   

15.
白钰  彭珍瑞 《控制与决策》2022,37(1):237-246
针对标准樽海鞘群算法收敛精度低、收敛速度慢的问题,提出一种基于自适应惯性权重的樽海鞘群算法(AIWSSA).首先,在追随者位置更新公式中引入惯性权重因子评价个体之间的影响程度;然后,结合种群成功率与非线性递减函数对惯性权重因子进行自适应调整,使算法的全局和局部搜索能力得到更好地平衡;最后,为防止算法陷入局部最优,引入差分变异思想对非最优个体进行变异.对12个基准测试函数进行求解,实验结果表明:AIWSSA具有较高的收敛精度、收敛速度和鲁棒性; Wilcoxon统计检验结果表明:与标准樽海鞘群算法、改进的樽海鞘群算法、其他群体智能算法相比, AIWSSA表现出较好的性能.通过将其应用于两种带约束的工程设计问题,验证了AIWSSA的有效性.  相似文献   

16.
一种改进惯性权重的PSO算法   总被引:3,自引:3,他引:3       下载免费PDF全文
针对高维复杂函数优化,标准PSO算法收敛速度慢,易陷入局部最优点的缺点,提出一个惯性权重函数使算法的全局与局部搜索能力得到良好平衡,以达到快速收敛;并且该算法通过在后期进行变异操作,有效地增强了算法跳出局部最优解的能力。通过对三个典型的测试函数的优化所做的对比实验,表明改进的算法在求解质量和求解速度两方面都得到了好的结果。  相似文献   

17.
基于局部搜索惯性权重的粒子群优化算法*   总被引:2,自引:1,他引:1  
粒子群优化算法的性能主要受其中参数的影响,尤其是惯性权重的影响,选择合理的ω能够平衡算法的全局和局部搜索能力.根据当前粒子的函数值调整学习因子,利用局部搜索的方法确定惯性权重,提高了算法的鲁棒性能.最后对一些标准测试函数进行验证,实验分析表明该算法具有优越性能.  相似文献   

18.
一种非线性权重的自适应粒子群优化算法   总被引:1,自引:1,他引:1       下载免费PDF全文
针对粒子群优化算法中出现早熟和不收敛问题,分析了基本PSO算法参数对其优化性能的影响,提出了基于非线性权重的自适应粒子群优化算法(NWAPSO)。在优化过程中,惯性权重随迭代次数非线性变化,改进的算法能使粒子自适应地改变搜索速度进行搜索,并与基本粒子群算法以及其他改进的粒子群算法进行了比较。实验结果表明,该算法在搜索精度和收敛速度等方面有明显优势。特别对于高维、多峰等复杂非线性优化问题,算法的优越性更明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号