首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An important element in the successful operation of flexible manufacturing systems (FMS) is the management of the tooling component. This paper reports on one aspect of tool management for FMS operations. Four tool allocation and scheduling strategies are compared in the presence of three part selection rules through a simulation study of a five-machine FMS with an automated tool handling system. The tool allocation strategies are similar to those used in industry while the part selection rules are synthesized from the literature on FMS scheduling under tooling constraints. The use of different tooling strategies produces significantly different outcomes in FMS performance.  相似文献   

2.
This paper describes a study which explores human decision-making abilities in scheduling and dispatching of a flexible manufacturing system (FMS) An experiment is described, using an FMS, in which subjects make scheduling and dispatching decisions using a real-time interactive computer-simulation based system. The experimental results demonstrate that human decision-making is superior to general dispatching rules. An explanation of these results and an analysis of subjects' behaviour is presented in the light of information obtained from verbal protocol data  相似文献   

3.
Although a significant amount of research has been carried out in the scheduling of flexible manufacturing systems (FMSs), it has generally been focused on developing intelligent scheduling systems. Most of these systems use simple scheduling rules as a part of their decision process. While these scheduling rules have been investigated extensively for a job shop environment, there is little guidance in the literature as to their performance in an FMS environment. This paper attempts to investigate the performances of machine and AGV scheduling rules against the mean flow-time criterion. The scheduling rules are tested under a variety of experimental conditions by using an FMS simulation model.  相似文献   

4.
A methodology is presented for the dynamic scheduling of flexible manufacturing systems (FMSs). A two-level control hierarchy is suggested. The higher level is used for determining a dominant decision criterion and relevant scheduling rules, based on an analysis of the actual shop status. The lower level uses simulation for determining the best scheduling policy to be selected. Simulation is used to evaluate different control options, and once a control decision is made, it is operated in real time to serve as the FMS controller. The suggested scheduling and control scheme is being developed, implemented and tested in a physical computer integrated manufacturing (CIM)/FMS environment at the CIM and Robotics Lab of the Faculty of Industrial Engineering and Management, Technion. This will serve as a test-bed to study the performance of the FMS under different scheduling rules and control options, and to recommend the best combination of control policies and parameters for specific system conditions and global production objectives.  相似文献   

5.
This paper presents a new algorithm for the flexible manufacturing system (FMS) scheduling problem. The proposed algorithm is a heuristic based on filtered beam search. It considers finite buffer capacity, routing and sequence flexibilities and generates machine and automated guided vehicle (AGV) schedules for a given scheduling period. A new deadlock resolution mechanism is also developed as an integral part of the proposed algorithm. The performance of the algorithm is compared with several machine and AGV dispatching rules using mean flow time, mean tardiness and makespan criteria. It is also used to examine the effects of scheduling factors (i.e., machine and AGV load levels, routing and sequence flexibilities, etc.) on the system performance. The results indicate that the proposed scheduling algorithm yields considerable improvements in system performance over dispatching rules under a wide variety of experimental conditions.  相似文献   

6.
In this paper, we propose an integrated approach of inductive learning and competitive neural networks for developing multi-objective flexible manufacturing system (FMS) schedulers. Simulation and competitive neural networks are applied sequentially to extract a set of classified training data which is used to create a compact set of scheduling rules through inductive learning. The FMS scheduler can assist the operator to make decisions in real time, while satisfying multiple objectives desired by the operator. A simulation-based experiment is performed to evaluate the performance of the resulting scheduler.  相似文献   

7.
This study examines the effects of scheduling rules on the performance of flexible manufacturing systems (FMSs). Several machine and AGV scheduling rules are tested against the mean flowtime criterion. In general, scheduling rules are widely used in practice ranging from direct applications as a stand-alone scheduling scheme to indirect application as a part of complicated scheduling systems. In this paper, we compare the rules under various experimental conditions by using an FMS simulation model. Our objective is to measure sensitivity of the rules to changes in processing time distributions, various levels of breakdown rates, and types of AGV priority schemes. A comprehensive bibliography is also presented in the paper.  相似文献   

8.
This paper deals with the concurrent solution of the loading and scheduling problems in a flexible manufacturing system ( FMS) environment. It is assumed that the FMS environment has production planned periodically and each job in the system has a number of operations to be processed on flexible machines. A heuristic approach using a constructive scheduling method is developed to solve the FMS loading and scheduling problems concurrently. The computational results are compared to an existing procedure that considers a hierarchical approach with a similar problem environment. The comparison study shows a significant improvement over the existing hierarchical procedure. This experiment indicates that a concurrent solution approach can solve the FMS loading and scheduling problems very effectively.  相似文献   

9.
A FMS(flexible manufacturing system) scheduling algorithm based on an evolution algorithm (EA) is developed by intensively analyzing and researching the scheduling method in this paper.Many factors related to FMS scheduling are considered sufficiently.New explanations for a common kind of the encoding model are given.The rationality of encoding model is ensured by designing a set of new encoding methods,while the simulation experiment is performed.The results show that a FMS scheduling optimum problem with multi-constraint conditions can be effectively solved by a FMS scheduling simulation model based on EA.Comparing this method with others,this algorithm has the advantage of good stability and quick convergence.  相似文献   

10.
A performance-based dynamic scheduling model for random flexible manufacturing systems (FMSs) is presented. The model is built on the mathematical background of supervisory control theory of discrete event systems. The dynamic FMS scheduling is based on the optimization of desired performance measures. A control theory-based system representation is coupled with a goal programming-based multi-criteria dynamic scheduling algorithm. An effectiveness function, representing a performance index, is formulated to enumerate the possible outputs of future schedules. Short-term job scheduling and dispatching decisions are made based on the values obtained by optimizing the effectiveness function. Preventive actions are taken to reduce the difference between actual and desired target values. To analyse the real-time performance of the proposed model, a software environment that included various Visual Basic Application® modules, simulation package Arena®, and Microsoft Access® database was developed. The experimentation was conducted (a) to determine the optimum look-ahead horizons for the proposed model and (b) to compare the model with conventional scheduling decision rules. The results showed that the proposed model outperformed well-known priority rules for most of the common performance measures.  相似文献   

11.
Adaptive scheduling is an approach that selects and applies the most suitable strategy considering the current state of the system. The performance of an adaptive scheduling system relies on the effectiveness of the mapping knowledge between system states and the best rules in the states. This study proposes a new fuzzy adaptive scheduling method and an automated knowledge acquisition method to acquire and continuously update the required knowledge. In this method, the criteria for scheduling priority are selected to correspond to the performance measures of interest. The decisions are made by rules that reflect those criteria with appropriate weights that are determined according to the system states. A situated rule base for this mapping is built by an automated knowledge acquisition method based on system simulation. Distributed fuzzy sets are used for evaluating the criteria and recognizing the system states. The combined method is distinctive in its similarity to the way human schedulers accumulate and adjust their expertise: qualitatively establishing meaningful criteria and quantitatively optimizing the use of them. As a result, the developed rules may readily be interpreted, adopted and, when necessary, modified by human experts. An application of the proposed method to a job-dispatching problem in a hypothetical flexible manufacturing system (FMS) shows that the method can develop effective and robust rules.  相似文献   

12.
This paper addresses the problem of simultaneous scheduling of machines and two identical automated guided vehicles (AGVs) in a flexible manufacturing system (FMS). For solving this problem, a new meta-heuristic differential evolution (DE) algorithm is proposed. The problem consists of two interrelated problems, scheduling of machines and scheduling of AGVs. A simultaneous scheduling of these, in order to minimise the makespan will result in a FMS being able to complete all the jobs assigned to it at the earliest time possible, thus saving resources. An increase in the performance of the FMS under consideration would be expected as a result of making the scheduling of AGVs as an integral part of the overall scheduling activity. The algorithm is tested by using problems generated by various researchers and the makespan obtained by the algorithm is compared with that obtained by other researchers and analysed.  相似文献   

13.
《国际生产研究杂志》2012,50(21):6111-6121
This study deals with controlling flexible manufacturing systems (FMS) operating in volatile production environments. Most studies that address this issue use some sort of adaptive scheduling that enables the FMS to cope with the randomness and variability efficiently. The methods presented in the literature are usually based on heuristics and use simple dispatching rules. They do not consider changing the decision criteria dynamically as the system conditions change. In contrast to previous studies, the present study focuses on developing a control mechanism for dynamic scheduling that is based on incremental optimisation. This means that each time a scheduling decision is made, the local optimisation problem is solved such that the next jobs to be processed on machines are selected. The objective function (dominant decision criterion) for this optimisation problem is selected dynamically based on production order requirements, actual shop-floor status and system priorities. The proposed multi-criteria optimisation-based dynamic scheduling methodology was evaluated and compared with some known scheduling rules/policies. The results obtained demonstrate the superiority of the suggested methodology as well as its capability to cope with a multi-criteria environment.  相似文献   

14.
This paper deals with controlling flexible manufacturing systems (FMS) operating in volatile production environments. Shnits et al. (Shnits, B., Rubinovitz, J., and Sinreich, D., 2004. Multicriteria dynamic scheduling methodology for controlling a flexible manufacturing system. International Journal of Production Research, 42 (17), 3457–3472.) and Shnits and Sinreich (Shnits, B. and Sinreich, D., 2006. Controlling flexible manufacturing systems based on a dynamic selection of an appropriate operational criteria and scheduling policy. International Journal of Flexible Manufacturing Systems, 18 (1), 1–27.) developed a multi-criteria dynamic scheduling mechanism for controlling an FMS that can cope with such environments. An important part of this mechanism functioning, which impinges directly on its performance, is the activation of its decision-making process. This study continues the research presented in the above-mentioned papers and proposes different triggering methods for activating the control system decision-making process. The operational conditions for each suggested triggering method were analysed and a comparative analysis between these methods was performed. It was revealed that the highly dynamic triggering method, which activates the decision-making process right before a resource becomes available, outperformed the triggering methods that use a predefined scheduling period.  相似文献   

15.
Scheduling in a flexible manufacturing system (FMS)must take into account the shorter lead-time, the multiprocessing environment, the flexibility of machine tools, and the dynamically changing states. The scheduling approach described in this paper employs a knowledge-based system to carry out the nonlinear planning method developed in artificial intelligence. The state-space process for plan-generation, by either forward- or backward-chaining, can handle scheduling requirements unique to the FMS environment. A prototype of this scheduling system has been implemented on a LISP machine and is applied to solve the scheduling problem in flexible manufacturing cells. This scheduling method is characterized by its knowledge-based organization, symbolic representation, state-space inferencing, and its ability for dynamic scheduling and plan revision. It provides a foundation for integrating intelligent planning, scheduling, and machine learning in FMSs.  相似文献   

16.
This research investigates the interaction between manufacturing system constructs and the operation strategies in a multiple-load Automated Guided Vehicle System (AGVS) when AGVs in a system can carry two or more loads. The load pick-up problem arises when an AGV stops at a pick-up queue and has to decide which part(s) in the queue should be picked up. Since an AGV can carry multiple loads, a drop-off rule is then needed to determine the next stop for the AGV to deliver one or more loads. Several real-time composite heuristic rules for selecting load and determining the next stop are proposed and evaluated in two manufacturing system constructs: the jobshop and the flexible manufacturing system (FMS). A number of simulation models are developed to obtain statistics on various performance measures of the two system constructs under different experimental conditions. The simulation results reveal that the pick-up rules affect the system more than the drop-off rules. In general, rules to avoid starving and blocking in workstations perform better than the rules for shortest distance in throughput. However, the rules perform differently in jobshop and FMS based on other performance measures, indicating an interaction between system constructs and load selection strategies. The difference in rule performance within the same construct is also affected by several AGVS design parameters. Overall our study suggests that no load pick-up rule is always a champion, and the design of an efficient multiple-load AGVS must consider all issues in a global fashion.  相似文献   

17.
Due to increasing competition in the developing global economy, today’s companies are facing greater challenges than ever to employ flexible manufacturing systems (FMS) capable of dealing with unexpected events and meeting customers’ requirements. One such system is robotic flexible assembly cells (RFACs). There has been relatively little work on the scheduling of RFACs, even though overall scheduling problems of FMS have attracted significant attention. This paper presents Taguchi optimisation method in conjunction with simulation modelling in a new application for dynamic scheduling problems in RFACs, in order to minimise total tardiness and number of tardy jobs (NT). This is the first study to address these particular problems. In this study, Taguchi method has been used to reduce the minimum number of experiments required for scheduling RFACs. These experiments are based on an L9 orthogonal array with each trial implemented under different levels of scheduling factors. Four factors are considered simultaneously: sequencing rule, dispatching rule, cell utilisation and due date tightness. The experimental results are analysed using an analysis of mean to find the best combination of scheduling factors and an analysis of variance to determine the most significant factors that influence the system’s performance. The resulting analysis shows that this proposed methodology enhances the system’s scheduling policy.  相似文献   

18.
This paper proposes a fuzzy inference-based scheduling decision for flexible manufacturing systems (FMS) with multiple objectives. The objectives have different and dynamic preference levels. It is inferred that the changes in the production environment may be sensed by environmental variables. The detected changes are input in a fuzzy inference mechanism, which outputs the current preference levels of all objectives. A multiple criteria scheduling decision is then made, using the partitioned combination of the preference levels. An example of application is presented. Simulation results show very good performance for the proposed system.  相似文献   

19.
This paper describes an intelligent decision support system (IDSS) for real time control of a flexible manufacturing system (FMS). The controller is capable of classifying symptoms in developing the control policies on FMSs with flexibility in operation assignment and scheduling of multi-purpose machining centres which have different tools with their own efficiency. The proposed system is implemented by coupling of rule-based IDSS, simulation block and centralised simulation optimiser for elicitation of shop floor control knowledge. This posteriori adaptive controller uses a new bilateral mechanism in simulation optimiser block for offline training of IDSS based on multi-performance criteria simulation optimisation. The proposed intelligent controller receives online information of the FMS current state and trigger appropriate control rule within real-time simulation data exchange. Finally the FMS intelligent controller is validated by a benchmark test problem. Application of this adaptive controller showed that it could be an effective approach for real time control of various flexible manufacturing systems.  相似文献   

20.
There are two items that significantly enhance the generalisation ability (i.e. classification accuracy) of machine learning‐based classifiers: feature selection (including parameter optimisation) and an ensemble of the classifiers. Accordingly, the objective in this study is to develop an ensemble of classifiers based on a genetic algorithm (GA) wrapper feature selection approach for real time scheduling (RTS). The proposed approach can better enhance the generalisation ability of the RTS knowledge base (i.e. classifier) in comparison with three classical machine learning‐based classifier RTS systems, including the GA‐based wrapper feature selection mechanism, in terms of the prediction accuracy of 10‐fold cross validation as measured according to all the performance criteria. The proposed ensemble classifier RTS also provides better system performance than the three machine learning‐based RTS systems, including the GA‐based wrapper feature selection mechanism and heuristic dispatching rules, under all the performance criteria, over a long period in a flexible manufacturing system (FMS) case study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号